Mathematical Skills

Exercise sheet

7 December 2015

A statement P(n) about a natural number n can be proved to hold for all $n \ge n_0$ (usually $n_0 = 1$ or $n_0 = 0$) by

- (i) (Induction basis) Verifying $P(n_0)$ is true, and
- (ii) (Induction step) Proving that $P(n) \Rightarrow P(n+1)$.

In the induction step (ii) the *induction hypothesis* is that P(n) is true. While the hypothesis is not known to be true for general n yet, the basis for induction gives that $P(n_0)$ is true. Hence $P(n_0+1)$ is true by (ii), and so $P(n_0+2)$ is true, again by (ii), etc. In other words the truth of $P(n_0)$ is transmitted by the implication in (ii) to the truth of P(n) for all natural numbers $n \ge n_0$.

- 1. Prove the following statements by mathematical induction:
 - (i) $n! > 2^n$ for $n \ge 4$.
 - (ii) $(1+x)^n \ge 1 + nx$ for $n \ge 0$ and real number x > -1.
- (iii) $\sum_{i=1}^{n} (-1)^{i} i^{2} = (-1)^{n} {\binom{n+1}{2}}$ for $n \ge 1$.
- (iv) For $n \ge 1$, the number of subsets of $\{1, 2, \ldots, n\}$ (including the empty set) is 2^n .
- (v) For all $n \ge i \ge 0$,

$$\sum_{j=i}^{n} \binom{j}{i} = \binom{n+1}{i+1},$$

(where we set $\binom{0}{0} = 1$).

Either prove by induction or by some other method the following statements:
(i) For n ≥ 1,

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}.$$

(ii) For all $n \ge 1$,

$$a + ar + ar^{2} + \dots + ar^{n-1} = a\frac{r^{n} - 1}{r - 1}$$

(iii) For all $n \ge 0$,

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}.$$

(iv) For all $n \ge 1$,

(v) For
$$n \ge 0$$
,
$$\sum_{i=1}^{n} i = \binom{n+1}{2}.$$
$$\sum_{i=0}^{n} \binom{n}{i}^{2} = \binom{2n}{n}.$$