Polynomial graph invariants from graph homomorphisms

Delia Garijo ${ }^{1}$ Andrew Goodall ${ }^{2}$ Jarik Nešetřil ${ }^{2}$

${ }^{1}$ University of Seville, Spain
${ }^{2}$ Charles University, Prague

Midsummer Combinatorial Workshop XIX 29 July - 2 August 2013, Prague

Overview

(1) What am I talking about?
(2) Sequences giving graph polynomials
(3) Constructions

4 A new construction
(5) Open problems

Graph polynomials with a name for themselves...

- chromatic polynomial, $P(G ; k)=P(G \backslash u v ; k)-P(G / u v ; k)$
- Tutte polynomial (universal for recurrence in $\backslash u v$ and / $u v$)
- Averbouch-Godlin-Makowsky polynomial (recurrence in $\backslash u v$, / $u v$ and $-u-v$), includes matching polynomial
- Tittmann-Averbouch-Makowsky polynomial (recurrence in $\backslash v, / v$ and $-N[v])$, includes independence polynomial
... polynomials determined by counting H_{k}-colourings of a graph for a sequence of (multi)graphs $\left(H_{k}: k=1,2, \ldots\right)$
e.g. for $k \in \mathbb{N}, P(G ; k)$ counts K_{k}-colourings

Definition

Graphs G, H.
$f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $u v \in E(G) \Rightarrow f(u) f(v) \in E(H)$.

Definition

H with adjacency matrix $\left(a_{s, t}\right)$, $a_{s, t}$ weight on $s t \in E(H)$,

$$
\operatorname{hom}(G, H)=\sum_{f: V(G) \rightarrow V(H)} \prod_{u v \in E(G)} a_{f(u), f(v)}
$$

$$
\begin{aligned}
\operatorname{hom}(G, H) & =\#\{\text { homomorphisms from } G \text { to } H\} \\
& =\#\{H \text {-colourings of } G\}
\end{aligned}
$$

when H simple $\left(a_{s, t} \in\{0,1\}\right)$ or multigraph $\left(a_{s, t} \in \mathbb{N}\right)$

The main question
 For sequence $\left(H_{k, \ell, \ldots}\right)$, when is, for all graphs G,
 $$
\operatorname{hom}\left(G, H_{k, \ell, \ldots}\right)=p(G ; k, \ell, \ldots)
$$

for polynomial $p(G)$?

Examples

$$
\begin{gathered}
\left(K_{k}\right) \\
\operatorname{hom}\left(G, K_{k}\right)=P(G ; k) \\
\text { chromatic polynomial }
\end{gathered}
$$

Examples

Examples

$\left(K_{k}^{\ell}\right)$

$$
\begin{gathered}
\operatorname{hom}\left(G, K_{k}^{\ell}\right)=\sum_{f: V(G) \rightarrow[k]} \ell^{\#\{u v \in E(G) \mid f(u)=f(v)\}} \\
=k^{c(G)}(\ell-1)^{r(G)} T\left(G ; \frac{\ell-1+k}{\ell-1}, \ell\right)
\end{gathered}
$$

It has something to do with automorphisms...

Examples of strongly polynomial $\left(H_{k}\right)$ so far have $\operatorname{Aut}\left(H_{k}\right)=\operatorname{Sym}_{k}$.

$$
\left(\overline{k K_{2}}\right)=\left(K_{2, \ldots, 2}\right)
$$

$$
\operatorname{Aut}\left(K_{2, \ldots, 2}\right) \cong \operatorname{Sym}_{k}\left[\operatorname{Sym}_{2}\right]
$$

$$
\operatorname{hom}\left(G, K_{2, \ldots, 2}\right)=2^{|V(G)|} P(G ; k)
$$

... but what precisely?

$$
\begin{gathered}
\left(K_{2}^{\square k}\right)=\left(Q_{k}\right)(\text { hypercubes }) \\
\operatorname{Aut}\left(Q_{k}\right) \cong \operatorname{Sym}_{k}\left[\operatorname{Sym}_{2}\right]
\end{gathered}
$$

Proposition (Garijo, G., Nešetril, 2013+)

$\operatorname{hom}\left(G, Q_{k}\right)=p\left(G ; k, 2^{k}\right)$ for bivariate polynomial $p(G)$

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.
$\left(H_{k}\right)$ is polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for sufficiently large $k\left(k \geq k_{0}(G)\right)$

Since $\operatorname{hom}\left(G_{1} \cup G_{2}, H\right)=\operatorname{hom}\left(G_{1}, H\right) \operatorname{hom}\left(G_{2}, H\right)$, suffices to consider connected G.

Example

- $\left(K_{k}\right),\left(K_{k}^{1}\right) .\left(\overline{k K_{2}}\right)$ strongly polynomial in k
- $\left(K_{k}^{\ell}\right)$ strongly polynomial in k, ℓ
- $\left(C_{k}\right),\left(P_{k}\right)$ polynomial in k
- $\left(Q_{k}\right)$ not polynomial in k (but in k and 2^{k})

Subgraph criterion for strongly polynomial

$$
\begin{aligned}
& \operatorname{hom}\left(G, H_{k}\right)=\sum_{\substack{S \subseteq H_{k} \\
|V(S)| \leq|V(G)|}} \operatorname{sur}_{\mathrm{V}, \mathrm{E}}(G, S) \\
& \\
& =\sum_{S / \cong} \operatorname{sur}_{\mathrm{V}, \mathrm{E}}(G, S) \#\left\{\text { copies of } S \text { in } H_{k}\right\}
\end{aligned}
$$

Assuming G connected, homomorphic image S also connected

Proposition (De la Harpe \& Jaeger, 1995)

- $\left(H_{k}\right)$ strongly polynomial in $k \Leftrightarrow$ \forall connected $S \#\left\{\right.$ subgraphs $\cong S$ in $\left.H_{k}\right\}$ is polynomial in k

Subgraph criterion for strongly polynomial

$$
\begin{aligned}
& \operatorname{hom}\left(G, H_{k}\right)=\sum_{\substack{S \subseteq \subset_{i n d} H_{k} \\
|V(S)| \leq|V(G)|}} \operatorname{sur}_{V}(G, S) \\
& =\sum_{S / \cong} \operatorname{sur}_{V}(G, S) \#\left\{\text { induced copies of } S \text { in } H_{k}\right\}
\end{aligned}
$$

when H_{k} simple.
Proposition (De la Harpe \& Jaeger 1995)

- $\left(H_{k}\right)$ strongly polynomial in $k \Leftrightarrow$ \forall connected $S \#\left\{\right.$ subgraphs $\cong S$ in $\left.H_{k}\right\}$ polynomial in k for all $k \in \mathbb{N}$
- can replace subgraphs $\cong S$ by induced subgraphs $\cong S$ when $\left(H_{k}\right)$ simple graphs

Subgraph criterion for strongly polynomial

$$
\begin{aligned}
& \operatorname{hom}\left(G, H_{k}\right)=\sum_{\substack{S \subseteq \operatorname{ing}^{\prime} H_{k} \\
|V(S) \backslash \leq V(G)|}} \operatorname{sur}_{v}(G, S) \\
& \quad=\sum_{S / \cong} \operatorname{sur}_{v}(G, S) \#\left\{\text { induced copies of } S \text { in } H_{k}\right\}
\end{aligned}
$$

when H_{k} simple. (for each S want this polynomial in k)

Proposition (De la Harpe \& Jaeger 1995)

- $\left(H_{k}\right)$ strongly polynomial in $k \Leftrightarrow$ \forall connected $S \#\left\{\right.$ subgraphs $\cong S$ in $\left.H_{k}\right\}$ polynomial in k for all $k \in \mathbb{N}$
- can replace subgraphs $\cong S$ by induced subgraphs $\cong S$ when $\left(H_{k}\right)$ simple graphs

Polynomial but not strongly polynomial

$\left(P_{k}\right)$

$$
\operatorname{hom}\left(G, P_{k}\right)=\sum_{1 \leq j \leq \min \{|V(G)|, k\}}
$$

$\operatorname{hom}\left(P_{4}, P_{2}\right)=2$, and $\operatorname{hom}\left(P_{4}, P_{k}\right)=8 k-16$ for $k \geq 3$

Proposition (de la Harpe \& Jaeger, 1995; Garijo, G., Nešetřil, 2013+)

If $\left(H_{k}\right)$ strongly polynomial, H_{k} simple, then

- $\left(\overline{H_{k}}\right)$
- $\left(L\left(H_{k}\right)\right)$
strongly polynomial.
Also, $\left(\ell H_{k}\right)$ strongly polynomial in k, ℓ.

Proposition (Garijo, G., Nešetřil, 2013+)

If $\left(H_{k}\right)$ strongly polynomial, at most one loop each vertex of H_{k}, then

- $\left(H_{k}^{0}\right)$ (remove all loops)
- (H_{k}^{1}) (add loops to make 1 loop each vertex)
strongly polynomial.
More generally, $\left(H_{k}^{\ell}\right)$ strongly polynomial in k, ℓ.

Proposition

If $\left(F_{j}\right),\left(H_{k}\right)$ strongly polynomial, then

- $\left(F_{j} \cup H_{k}\right)$
- $\left(F_{j}+H_{k}\right)$
strongly polynomial in j, k.

Example

Beginning with trivial strongly polynomial sequence $\left(K_{1}\right)$, following strongly polynomial:

- multiple: $\left(k K_{1}\right)=\left(\overline{K_{k}}\right)$
- complement: $\left(K_{k}\right)$ (chromatic polynomial)
- loop-addition: $\left(K_{k}^{\ell}\right)$ (Tutte polynomial)
- join: $\left(K_{k-j}^{1}+K_{j}^{\ell}\right)$ (Averbouch-Godlin-Makowsky polynomial)

$$
\operatorname{hom}\left(G, K_{k-j}^{1}+K_{j}^{\ell}\right)=\xi(G ; k, \ell-1,-j(\ell-1))
$$

Three-term recurrence: for $u v \in E(G)$,

$$
\xi(G)=a \xi(G / u v)+b \xi(G \backslash u v)+c \xi(G-u-v)
$$

Definition

Given simple graph H, set of graphs $\left\{F_{v}: v \in V(H)\right\}$, the composition $H\left[\left\{F_{v}: v \in V(H)\right\}\right]$ is formed by

- disjoint union of $\left\{F_{v}: v \in V(H)\right\}$,
- join F_{u} and F_{v} whenever $u v \in E(H)$

Proposition (de la Harpe \& Jaeger, 1995)

If $\left(F_{v ; k_{v}}\right)$ strongly polynomial sequence in k_{v}, each $v \in V(H)$, then $\left(H\left[\left\{F_{v ; k_{v}}\right\}\right]\right)$ strongly polynomial in $\left(k_{v}: v \in V(H)\right)$.

Example

- $K_{r}\left[\left\{\overline{K_{k_{1}}}, \ldots, \overline{K_{k_{r}}}\right\}\right] \cong K_{k_{1}, \ldots, k_{r}}$ (complete r-partite graph)
- $F_{v ; k_{v}}=F_{k}$ all $v \in V(H)$ gives lexicographic product $H\left[F_{k}\right]$

Graph products: direct, cartesian, lexicographic

Graphs $H, H^{\prime}, \quad u, v \in V(H), u^{\prime}, v^{\prime} \in V\left(H^{\prime}\right)$

$$
H \times H^{\prime} \quad u \sim u^{\prime} \text { and } v \sim v^{\prime}
$$

$H \square H^{\prime}$

$$
u=v \text { and } u^{\prime} \sim v^{\prime},
$$

$$
\text { or } u \sim v \text { and } u^{\prime}=v^{\prime}
$$

$H\left[H^{\prime}\right]$

$$
\begin{aligned}
& u \sim v, \\
& \text { or } u=v \text { and } u^{\prime} \sim v^{\prime}
\end{aligned}
$$

Proposition (Garijo, G., Nešetřil, 2013+)

If $\left(F_{j}\right)$ and $\left(H_{k}\right)$ strongly polynomial, then

- $\left(F_{j} \times H_{k}\right)$
- $\left(F_{j}\left[H_{k}\right]\right)$
strongly polynomial in j, k.

Question

Strongly polynomial:

- $\left(\overline{K_{j}}+\overline{K_{k}}\right)=\left(K_{j, k}\right)$
- $\left(L\left(K_{j, k}\right)\right)=\left(K_{j} \square K_{k}\right)$ (Rook's graph)

If $\left(F_{j}\right),\left(H_{k}\right)$ strongly polynomial, is then $\left(F_{j} \square H_{k}\right)$ also?

A new type of strongly polynomial sequence

Tittmann-Averbouch-Godlin polynomial
(includes independence polynomial, satisfies three-term recurrence)

Branching coloured rooted trees

" k-branching" at edge of coloured rooted tree

Colours encoding subgraph of closure of rooted tree

level
3

2

1
0 (root)

(1) Branching rooted tree encoding subgraph of closure

(1) Branching rooted tree encoding subgraph of closure

$$
K_{1, \ell}\left[\left\{K_{1}\right\} \cup\left\{K_{1, k} \text { on leaves }\right\}\right]
$$

What am I talking about?

(2) Colours encoding subgraph along with ornaments

(Tittmann-Averbouch-Makowsky polynomial)

(3) Colours encoding cographs by cotrees

leaves $=$ vertices of cograph
$0=$ disjoint union, $1=$ join

Theorem (Garijo, G., Nešetřil, 2013+)

- Coloured rooted tree T representing graph H
- k, ℓ, \ldots branching variables on edges of T
- after k-branching, ℓ-branching, ..., obtain coloured rooted tree representing graph $H_{k, \ell, \ldots}$
Then $\left(H_{k}, \ell, \ldots\right)$ strongly polynomial in k, ℓ, \ldots.

Example

(1) H as a subgraph of closure of T, colour $s \in V(T)=V(H)$ subset of $\{0,1, \ldots, \operatorname{height}(T)\}$
(2) ornamented version of (1), strongly poly'l seq. $\left(F_{s ; j_{s}}\right)$ each vertex $s \in V(H)$, colour as in (1) paired with $F_{s ; j}$
(3) cotree T encoding of cograph H, colour non-leaf of T from $\{\cup,+\}$, leaves of $T=V(H)$
coloured rooted tree encoding graph $H_{j, k}$

(ornamented closure of perfect j-ary tree)

$$
\operatorname{hom}\left(G, H_{j, k}\right)=\sum_{\emptyset \subseteq W_{1} \subseteq W_{2} \subseteq \cdots \subseteq W_{d} \subseteq V} j^{\left|W_{d}\right|} k^{\sum_{1 \leq \ell \leq d} c\left(G\left[W_{\ell}\right]\right)}
$$

Question

This bivariate polynomial generalizes the Tittmann- AverbouchMakowsky polynomial.
Properties? Evaluations?

Definition

Generalized Johnson graph $J_{k, \ell, D}, D \subseteq\{0,1, \ldots, \ell\}$ vertices $\binom{[k]}{\ell}$, edge $u v$ when $|u \cap v| \in D$

- Johnson graphs $D=\{k-1\}$
- Kneser graphs $D=\{0\}$

Proposition (de la Harpe \& Jaeger, 1995; Garijo, G., Nešetřil, 2013+)
For every ℓ, D, sequence $\left(J_{k, \ell, D}\right)$ is strongly polynomial in k.

Question

Can generalized Johnson graphs be generated from simpler sequences by branching coloured rooted trees?

Some further questions

- Is there a characterization of strongly polynomial sequences $\left(H_{k}\right)$ by the sequence of automorphism groups $\left(\operatorname{Aut}\left(H_{k}\right)\right)$?
- Can $\left(H_{k}\right)$ be verified to be strongly polynomial by testing hom $\left(G, H_{k}\right)$ for G only in a restricted class of graphs? (yes, for connected graphs - but for a smaller class?)
- Which graph polynomials defined by strongly polynomial sequences of graphs satisfy a reduction formula (size-decreasing recurrence) like the chromatic polynomial?

