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4. For g € Q, let g4 : R — R be defined by g,(z) = 29sin (%) if x # 0 and ¢,(0) = 0.

In this question we use the fact that x7 is differentiable on R\ {0}, with derivative gz9~! when ¢ # 0
(also at 0 with derivative 0 when g > 0), and sin (1) is differentiable on R\ {0} (as the composition of
differentiable functions sin z and % on R\ {0}) and the product and composition rules for derivatives.
We also use the result of question 5(ii) that sinx is differentiable on R with derivative equal to cos x.

Thus, for ¢ # 0 and = # 0,
d . /1 /1
gol(x) = xq£ sin <x> + qx? " sin <a;>
1 1 1
= 29 [<—2> cos <>] + qz7 ' sin ()
x x x
1 1
= qz% ' sin <> — 2972 cos <>
x T
1

When g = 0, gy(z) = (_?2) coS (%) for x # 0, while by part (i) go is not even continous at 0 so in
particular has no derivative at 0.

(i) Show that the function go(z) = sin (Il) is not continuous at 0, and that g;(x) is continuous at 0
but not differentiable at 0.
We show that go(x) is not continuous at 0 by producing two sequences (a,) and (b,) both
convergent to 0 and such that (go(ay)) and (g(b,)) converge to different limits. With a view to
this, take a,, = ﬁ and b, = m Then go(a,) = 0 while go(b,) = 1.
The function g; () is continuous on R\ {0} since it is the product of functions with this property.
Continuity at 0 follows from lim,_,¢ g; () = lim,_,¢ x sin (%) =0=¢1(0). (Use |zsin %| < x| —
0. This is question 3(i).)

(ii) Prove that go is differentiable on R and calculate g5 (z). Show that ¢5(z) is discontinuous at 0.
The derivative of go at 0 exists as it is given by

h%sin (1)
5(0) = lim ———1~
9(0) = fim —

1
i hein (L
gy sin <h>

= 1.
lim g1(h)

=0

the last equality by part (i), in which it is shown that g;(x) is continuous at 0.

Hence

in (1) — 1
gé(x):{zxs H-en)) 270



The limit of gh(z) as z — 0 does not exist since while 2z sin (1) — 0 as z — 0 the second term
cos (%) does not have a limit as z — 0.

(Proof just as for sin (1): exhibit two sequences (z,) — 0 for which (cos ( L )) converges to

z Tn
different limits.)

Hence g5 is not continuous at 0.
(iii) Find a particular (potentially noninteger) value for ¢ so that

(a) gq is differentiable on R but such that g; is unbounded on [0, 1]. We have

o (@) = g9 'sin (%) — 292 cos (%) x#0
1 limp, 0 gg—1(h) x =0 when the limit exists.

For differentiability of g,(x) at 0 we require continuity of g,—1(x) at 0, i.e., ¢ > 1.

For unboundedness of g;(z) on [0,1] we require ¢ < 2 (when 2972 cos (1) is unbounded,
while ¢z?~! sin (%) is bounded for g > 1; otherwise both terms are bounded for z € (0, 1]).
Hence for g4(x) to be differentiable on R while gg(x) is unbounded on [0, 1] any value
q € (1,2) will serve, e.g. q = %

(b) g4 is differentiable on R with g(’] continuous but not differentiable at 0.

Continuity of g}(z) at 0 (and hence all of R) requires ¢ > 2 (for 72 cos (1) to have a
limit as © — 0). For g; not to be differentiable at 0 either g,—; is not differentiable at 0
(g < 2) or 2972 cos (%) is not differentiable at 0, which is the case iff ¢ < 3. (The proof that

Z COS (%) is not differentiable at 0 is analogous to showing g1 (x) is not differentiable at 0.)
Hence for any ¢ € (2,3] the function g,(x) is differentiable on R and g;(x) is continuous
but not differentiable at 0. For example, ¢ = 3.

(c) gq is differentiable on R and y/(’j is differentiable on R, but such that g(’]/ is discontinuous at 0.
By the sum, product and composition rules for differentiation, for x # 0,

ga(x) = q(g—1)z"sin (;) + gz (—27%) cos <i) — (q—2)z%> cos <1> 1 2722 2 sin <1)

T T

1 1 1
=q(q— 1)xq*2 sin () —2(q— 1)1“173 cos <> 429 4gin <>
T . =

while for z = 0,

1 T gé](h) - g;(O) BEET q—2 l 1943 l
97(0) = }lllir(l) - = }lgr(l) gh?*sin A h9™° cos A
which exists iff ¢ > 3. (The limit is O when it exists.)

1

For g//(x) to be discontinuous at 0 we require ¢ < 4 (so that 29 *sin (1) is discontinuous
at 0; the other terms in the sum above giving g/ (x) are continuous at 0 for ¢ > 3).

Hence we may take any value of ¢ € (3,4], such as ¢ = 4, and g, will have the required
properties.

(i) A function f: R — R is called periodic with period T if f(z +T) = f(z) for all z € R. Prove
that if f is a periodic function that is differentiable everywhere then f’(x) is periodic as well.
What is the period of f'?

T is a period of f’ as well since

f/(x):lim flz+h)— f(z) — lim flea+T+h)— f(z+1T)

!
= T .
h—0 h h—0 h Flet+T+h)

Therefore f’ is periodic with period T



(ii) Calculate the derivative of the functions sinz and cosxz. Deduce the derivative of tanz from
these. [For calculating the derivative of sinx use the identity sin(x+h) = sinx cos h+sin h cos z,
while for cosx you might use the analogous identity, or use cosx = sin(x + 7).]

) . sin(z+ h) —sinx
—sinz = lim
dz h—0 h
sinx cos h + sin hcosx — sinx

=1
B0 h
. . cosh—1 sin h
= lim |sing————— 4 coszx
h—0 h
. . cosh—1 . sinh
=sinz lim ———— 4 cosz lim
h—0 h h—=0 h
=sinz-0+coszx -1
= cos x,
where we have used limy,_,o 2% = 1 from question 3(ii) and
cosh—1 . (cosh—1)(cosh+1)
im ——— = lim
h—0  h h—0 h(cosh + 1)
I cos?h —1
=lim ——
h—0 h(cosh + 1)
. —sin?h
=lim ——
h—0 h(cosh + 1)
I sinh —sinh
= lim .
h—0 h  cosh+1
=1-0=0
Using cos z = sin(x + 7 ) and the chain rule,
d d . (@ + 77)
—cosx = —sin(x + =
dx dx 2
= cos(z + z)
2
= —sinzx

Using the rule for differentiating the quotient of two functions,

d fan s — d [/sinz
dx "~ dz \cosz

cosx - cosx — (—sinx) sinz

cos? x
1 2 2
= 5 = sec r=1+tan"zx
cos? x

(iii) Write down domains for the functions sin and cos restricted to which these functions become

bijections. Calculate the derivatives of the inverse functions sin~' and cos™!.

We have bijections sin : [-F, 5] — [~1,1], cos : [0, 7] — [~1,1] and tan(—F, §) — (—00, 00).

Let # = sin~'y, for y € [~1,1]. Differentiating the identity sinz = sin(sin=!y) = y, for



y € (—1,1),! we obtain by the chain rule

1 = —sin(sin™!y)

from which

dy yicosxi\/l—sin%x:\/l—yj

Similarly, differentiating cosz = cos(cos™ty) =y (y € (—1,1)) yields

d 1
—(cosTly) = ———e.
dy 1—y2

For # = tan~!y, y € R, differentiating y = tan(tan='y) yields

1= a4 tan(tan~! y)

dy
d -1 2
= d—y(tan y) - (1+ tan” z)
d -1 2
= gyt v A4y,
whence d%(tam_1 y) = ﬁ

6. The hyperbolic functions sinh, cosh, tanh : R — R are defined for x € R by

e +e* . et —e ” sinh x
coshy = ——— sinhx = B — tanhx =

coshz’

(i) Determine the range of each function sinh, cosh and tanh.

We have 0 < e < 1 for z < 0 and 1 < e* < oo for z > 0 (and the exponential function is a

ef—e” "

bijection (—o0,00) — (0,00). Hence 1 < coshz = 1= < oo and —oco < sinhz = < 0.
Also
sinhz e —e™® 2 -1
tanhx = = =
coshz et +e® 241
takes values between J%1 = —1 and 1 (the limiting value of Z—j& as y — 00).

Hence cosh : (—o0,00) — (1,00), sinh : (—00, 00) = (—00,00) and tanh : (—o0, 00) — (—1,1).

(ii) Calculate the derivatives of sinh, cosh and tanh. Using %ez =e’, %e‘x = —e”
et —e % .
—coshx = ———— =sinhx,
dx
) e +e "
—sinhx = ——— = coshux,
dz 2
and, using the quotient rule for derviatives,
d sinhz  sinh?z — cosh?z 1 9
—tanhx = — = 3 = 5— = 1 —tanh”z.
dz dw coshz cosh” x cosh” x
'The inverse function sin™! : [~1,1] — [~ %, Z] does not have two-sided limits at y = 1 so derivatives are not defined
at these endpoints (the graph of sin™'y has asymptotes y = =£1, the derivative/slope approaches infinity as y — #1).
The function sin : [-F, 5] — [~1,1] extends by periodicity to all of R and is differentiable everywhere with derivative

COS x.



(iii) Find an expression for the inverse functions sinh™!, cosh™' and tanh™! in terms of the natural

e 41
2eT

logarithm In. Calculate their derivatives. Let y = coshx = Solving the quadratic

(€¥)? — 2ye® +1 =0 in e yields
T=y+y2-1

and since e* > 0 we have, for y € (1, 00),

cosh™y =z =In(y+ 22— 1).

Similarly, solving y = sinhz = < 2 for e® yields, for y € (—o0,00),

sinh ™'y =z =1In(y + 22 +1).

Finally, let y = tanhz = Solving the quadratic (1 — y)(e®)? = 1 + y that this gives, we

have, for y € (—1,1),

21+1

1 1.1
tanh_ly:x:lnwlﬂ:flnﬂ.
-y 2 1-—y

The derivatives of the inverse hyperbolic functions can be calculated in a similar way to the
trigonometric functions in question 5(iii), or, since we have explicit expressions for these inverse

functions in terms of natural logarithms and % In f(z) = J}/((f)) for a differentiable function with

range contained in (0,00), we can use the chain rule to calculate:

d 14 1) 2 _ 1)z 4 1
7cosh_1y_7 n(y+ g2 = 1) yly=—1)"2 (yl )2 +y - 7
d 2

Y y+ (y2 - 1) W2 -1D2y+@w*-12) Vy -1

1 1
d 1 1)"2 24 1)z 1
4 o y_ilner /1) = ty?+1)72 (y"+ 12 +y _

D=

(NI

dy y+ @R+ D: 2D+ 2 +D)E) VP
and
d 1d 1] 1 1 1 1
—tanh ™ty = - —[In(1 +y) —In(1 —y)] = = + = = .
dy Y 2dy[n( v) =il =yl =5 LH/ 1—y] (I+y)(1-y) 1-y?



