Mathematical Analysis I

Exercise sheet 9

Selected solutions
10 December 2015

References: Abbott 4.5, 4.6, 5.2, Bartle \& Sherbert 5.3, 6.1

4. For $q \in \mathbb{Q}$, let $g_{q}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g_{q}(x)=x^{q} \sin \left(\frac{1}{x}\right)$ if $x \neq 0$ and $g_{q}(0)=0$.

In this question we use the fact that x^{q} is differentiable on $\mathbb{R} \backslash\{0\}$, with derivative $q x^{q-1}$ when $q \neq 0$ (also at 0 with derivative 0 when $q>0$), and $\sin \left(\frac{1}{x}\right)$ is differentiable on $\mathbb{R} \backslash\{0\}$ (as the composition of differentiable functions $\sin x$ and $\frac{1}{x}$ on $\mathbb{R} \backslash\{0\}$) and the product and composition rules for derivatives. We also use the result of question 5 (ii) that $\sin x$ is differentiable on \mathbb{R} with derivative equal to $\cos x$.

Thus, for $q \neq 0$ and $x \neq 0$,

$$
\begin{aligned}
g_{q}^{\prime}(x) & =x^{q} \frac{\mathrm{~d}}{\mathrm{~d} x} \sin \left(\frac{1}{x}\right)+q x^{q-1} \sin \left(\frac{1}{x}\right) \\
& =x^{q}\left[\left(-\frac{1}{x^{2}}\right) \cos \left(\frac{1}{x}\right)\right]+q x^{q-1} \sin \left(\frac{1}{x}\right) \\
& =q x^{q-1} \sin \left(\frac{1}{x}\right)-x^{q-2} \cos \left(\frac{1}{x}\right)
\end{aligned}
$$

When $q=0, g_{0}^{\prime}(x)=\left(-\frac{1}{x^{2}}\right) \cos \left(\frac{1}{x}\right)$ for $x \neq 0$, while by part (i) g_{0} is not even continous at 0 so in particular has no derivative at 0 .
(i) Show that the function $g_{0}(x)=\sin \left(\frac{1}{x}\right)$ is not continuous at 0 , and that $g_{1}(x)$ is continuous at 0 but not differentiable at 0 .

We show that $g_{0}(x)$ is not continuous at 0 by producing two sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ both convergent to 0 and such that $\left(g_{0}\left(a_{n}\right)\right)$ and $\left(g\left(b_{n}\right)\right)$ converge to different limits. With a view to this, take $a_{n}=\frac{1}{2 \pi n}$ and $b_{n}=\frac{1}{\pi / 2+2 \pi n}$. Then $g_{0}\left(a_{n}\right)=0$ while $g_{0}\left(b_{n}\right)=1$.
The function $g_{1}(x)$ is continuous on $\mathbb{R} \backslash\{0\}$ since it is the product of functions with this property. Continuity at 0 follows from $\lim _{x \rightarrow 0} g_{1}(x)=\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0=g_{1}(0)$. (Use $\left|x \sin \frac{1}{x}\right| \leq|x| \rightarrow$ 0 . This is question $3(\mathrm{i})$.)
(ii) Prove that g_{2} is differentiable on \mathbb{R} and calculate $g_{2}^{\prime}(x)$. Show that $g_{2}^{\prime}(x)$ is discontinuous at 0 . The derivative of g_{2} at 0 exists as it is given by

$$
\begin{aligned}
g_{2}^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{h^{2} \sin \left(\frac{1}{h}\right)}{h} \\
& =\lim _{h \rightarrow 0} h \sin \left(\frac{1}{h}\right) \\
& =\lim _{h \rightarrow 0} g_{1}(h) \\
& =0
\end{aligned}
$$

the last equality by part (i), in which it is shown that $g_{1}(x)$ is continuous at 0 .
Hence

$$
g_{2}^{\prime}(x)= \begin{cases}2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

The limit of $g_{2}^{\prime}(x)$ as $x \rightarrow 0$ does not exist since while $2 x \sin \left(\frac{1}{x}\right) \rightarrow 0$ as $x \rightarrow 0$ the second term $\cos \left(\frac{1}{x}\right)$ does not have a limit as $x \rightarrow 0$.
(Proof just as for $\sin \left(\frac{1}{x}\right)$: exhibit two sequences $\left(x_{n}\right) \rightarrow 0$ for which $\left(\cos \left(\frac{1}{x_{n}}\right)\right)$ converges to different limits.)
Hence g_{2}^{\prime} is not continuous at 0 .
(iii) Find a particular (potentially noninteger) value for q so that
(a) g_{q} is differentiable on \mathbb{R} but such that g_{q}^{\prime} is unbounded on $[0,1]$. We have

$$
g_{q}^{\prime}(x)=\left\{\begin{array}{ll}
q x^{q-1} \sin \left(\frac{1}{x}\right)-x^{q-2} \cos \left(\frac{1}{x}\right) & x \neq 0 \\
\lim _{h \rightarrow 0} g_{q-1}(h) & x=0
\end{array}\right. \text { when the limit exists. }
$$

For differentiability of $g_{q}(x)$ at 0 we require continuity of $g_{q-1}(x)$ at 0 , i.e., $q>1$.
For unboundedness of $g_{q}^{\prime}(x)$ on $[0,1]$ we require $q<2$ (when $x^{q-2} \cos \left(\frac{1}{x}\right)$ is unbounded, while $q x^{q-1} \sin \left(\frac{1}{x}\right)$ is bounded for $q \geq 1$; otherwise both terms are bounded for $\left.x \in(0,1]\right)$. Hence for $g_{q}(x)$ to be differentiable on \mathbb{R} while $g_{q}^{\prime}(x)$ is unbounded on $[0,1]$ any value $q \in(1,2)$ will serve, e.g. $q=\frac{1}{2}$.
(b) g_{q} is differentiable on \mathbb{R} with g_{q}^{\prime} continuous but not differentiable at 0 .

Continuity of $g_{q}^{\prime}(x)$ at 0 (and hence all of \mathbb{R}) requires $q>2$ (for $x^{q-2} \cos \left(\frac{1}{x}\right)$ to have a limit as $x \rightarrow 0$). For g_{q}^{\prime} not to be differentiable at 0 either g_{q-1} is not differentiable at 0 $(q<2)$ or $x^{q-2} \cos \left(\frac{1}{x}\right)$ is not differentiable at 0 , which is the case iff $q \leq 3$. (The proof that $x \cos \left(\frac{1}{x}\right)$ is not differentiable at 0 is analogous to showing $g_{1}(x)$ is not differentiable at 0 .) Hence for any $q \in(2,3]$ the function $g_{q}(x)$ is differentiable on \mathbb{R} and $g_{q}^{\prime}(x)$ is continuous but not differentiable at 0 . For example, $q=3$.
(c) g_{q} is differentiable on \mathbb{R} and g_{q}^{\prime} is differentiable on \mathbb{R}, but such that $g_{q}^{\prime \prime}$ is discontinuous at 0 . By the sum, product and composition rules for differentiation, for $x \neq 0$,

$$
\begin{aligned}
g_{q}^{\prime \prime}(x) & =q(q-1) x^{q-2} \sin \left(\frac{1}{x}\right)+q x^{q-1}\left(-x^{-2}\right) \cos \left(\frac{1}{x}\right)-(q-2) x^{q-3} \cos \left(\frac{1}{x}\right)+x^{q-2} x^{-2} \sin \left(\frac{1}{x}\right) \\
& =q(q-1) x^{q-2} \sin \left(\frac{1}{x}\right)-2(q-1) x^{q-3} \cos \left(\frac{1}{x}\right)+x^{q-4} \sin \left(\frac{1}{x}\right)
\end{aligned}
$$

while for $x=0$,

$$
g_{q}^{\prime \prime}(0)=\lim _{h \rightarrow 0} \frac{g_{q}^{\prime}(h)-g_{q}^{\prime}(0)}{h}=\lim _{h \rightarrow 0}\left[q h^{q-2} \sin \left(\frac{1}{h}\right)-h^{q-3} \cos \left(\frac{1}{h}\right)\right]
$$

which exists iff $q>3$. (The limit is 0 when it exists.)
For $g_{q}^{\prime \prime}(x)$ to be discontinuous at 0 we require $q \leq 4$ (so that $x^{q-4} \sin \left(\frac{1}{x}\right)$ is discontinuous at 0 ; the other terms in the sum above giving $g_{q}^{\prime \prime}(x)$ are continuous at 0 for $q>3$).
Hence we may take any value of $q \in(3,4]$, such as $q=4$, and g_{q} will have the required properties.
5.
(i) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic with period T if $f(x+T)=f(x)$ for all $x \in \mathbb{R}$. Prove that if f is a periodic function that is differentiable everywhere then $f^{\prime}(x)$ is periodic as well. What is the period of f^{\prime} ?
T is a period of f^{\prime} as well since

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f(x+T+h)-f(x+T)}{h}=f^{\prime}(x+T+h) .
$$

Therefore f^{\prime} is periodic with period T.
(ii) Calculate the derivative of the functions $\sin x$ and $\cos x$. Deduce the derivative of $\tan x$ from these. [For calculating the derivative of $\sin x$ use the identity $\sin (x+h)=\sin x \cos h+\sin h \cos x$, while for $\cos x$ you might use the analogous identity, or use $\cos x=\sin \left(x+\frac{\pi}{2}\right)$.]

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \sin x & =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x \cos h+\sin h \cos x-\sin x}{h} \\
& =\lim _{h \rightarrow 0}\left[\sin x \frac{\cos h-1}{h}+\cos x \frac{\sin h}{h}\right] \\
& =\sin x \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\cos x \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =\sin x \cdot 0+\cos x \cdot 1 \\
& =\cos x,
\end{aligned}
$$

where we have used $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$ from question $3($ ii) and

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\cos h-1}{h} & =\lim _{h \rightarrow 0} \frac{(\cos h-1)(\cos h+1)}{h(\cos h+1)} \\
& =\lim _{h \rightarrow 0} \frac{\cos ^{2} h-1}{h(\cos h+1)} \\
& =\lim _{h \rightarrow 0} \frac{-\sin ^{2} h}{h(\cos h+1)} \\
& =\lim _{h \rightarrow 0} \frac{\sin h}{h} \cdot \frac{-\sin h}{\cos h+1} \\
& =1 \cdot 0=0
\end{aligned}
$$

Using $\cos x=\sin \left(x+\frac{\pi}{2}\right)$ and the chain rule,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \cos x & =\frac{\mathrm{d}}{\mathrm{~d} x} \sin \left(x+\frac{\pi}{2}\right) \\
& =\cos \left(x+\frac{\pi}{2}\right) \\
& =-\sin x
\end{aligned}
$$

Using the rule for differentiating the quotient of two functions,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \tan x & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\sin x}{\cos x}\right) \\
& =\frac{\cos x \cdot \cos x-(-\sin x) \sin x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x}=\sec ^{2} x=1+\tan ^{2} x
\end{aligned}
$$

(iii) Write down domains for the functions sin and cos restricted to which these functions become bijections. Calculate the derivatives of the inverse functions $\sin ^{-1}$ and $\cos ^{-1}$.
We have bijections sin : $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1]$, $\cos :[0, \pi] \rightarrow[-1,1]$ and $\tan \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow(-\infty, \infty)$.
Let $x=\sin ^{-1} y$, for $y \in[-1,1]$. Differentiating the identity $\sin x=\sin \left(\sin ^{-1} y\right)=y$, for
$y \in(-1,1),{ }^{1}$ we obtain by the chain rule

$$
\begin{aligned}
1 & =\frac{\mathrm{d}}{\mathrm{~d} y} \sin \left(\sin ^{-1} y\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} y}\left(\sin ^{-1} y\right) \cos (x)
\end{aligned}
$$

from which

$$
\frac{\mathrm{d}}{\mathrm{~d} y}\left(\sin ^{-1} y\right)=\frac{1}{\cos x}=\frac{1}{\sqrt{1-\sin ^{2} x}}=\frac{1}{\sqrt{1-y^{2}}}
$$

Similarly, differentiating $\cos x=\cos \left(\cos ^{-1} y\right)=y(y \in(-1,1))$ yields

$$
\frac{\mathrm{d}}{\mathrm{~d} y}\left(\cos ^{-1} y\right)=-\frac{1}{\sqrt{1-y^{2}}}
$$

For $x=\tan ^{-1} y, y \in \mathbb{R}$, differentiating $y=\tan \left(\tan ^{-1} y\right)$ yields

$$
\begin{aligned}
1 & =\frac{\mathrm{d}}{\mathrm{~d} y} \tan \left(\tan ^{-1} y\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} y}\left(\tan ^{-1} y\right) \cdot\left(1+\tan ^{2} x\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} y}\left(\tan ^{-1} y\right) \cdot\left(1+y^{2}\right)
\end{aligned}
$$

whence $\frac{\mathrm{d}}{\mathrm{d} y}\left(\tan ^{-1} y\right)=\frac{1}{1+y^{2}}$.
6. The hyperbolic functions \sinh, cosh, $\tanh : \mathbb{R} \rightarrow \mathbb{R}$ are defined for $x \in \mathbb{R}$ by

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}, \quad \sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \tanh x=\frac{\sinh x}{\cosh x}
$$

(i) Determine the range of each function sinh, cosh and tanh.

We have $0<e^{x}<1$ for $x<0$ and $1 \leq e^{x}<\infty$ for $x \geq 0$ (and the exponential function is a bijection $(-\infty, \infty) \rightarrow(0, \infty)$. Hence $1<\cosh x=\frac{e^{x}+e^{-x}}{2}<\infty$ and $-\infty<\sinh x=\frac{e^{x}-e^{-x}}{2}<\infty$. Also

$$
\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{e^{2 x}-1}{e^{2 x}+1}
$$

takes values between $\frac{0+1}{0-1}=-1$ and 1 (the limiting value of $\frac{y-1}{y+1}$ as $y \rightarrow \infty$).
Hence $\cosh :(-\infty, \infty) \rightarrow(1, \infty)$, sinh $:(-\infty, \infty) \rightarrow(-\infty, \infty)$ and tanh $:(-\infty, \infty) \rightarrow(-1,1)$.
(ii) Calculate the derivatives of sinh, cosh and tanh. Using $\frac{\mathrm{d}}{\mathrm{d} x} e^{x}=e^{x}, \frac{\mathrm{~d}}{\mathrm{~d} x} e^{-x}=-e^{x}$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \cosh x & =\frac{e^{x}-e^{-x}}{2}=\sinh x \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \sinh x & =\frac{e^{x}+e^{-x}}{2}=\cosh x
\end{aligned}
$$

and, using the quotient rule for derviatives,

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \tanh x=\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\sinh x}{\cosh x}=\frac{\sinh ^{2} x-\cosh ^{2} x}{\cosh ^{2} x}=\frac{1}{\cosh ^{2} x}=1-\tanh ^{2} x
$$

[^0](iii) Find an expression for the inverse functions sinh ${ }^{-1}, \cosh ^{-1}$ and $\tanh ^{-1}$ in terms of the natural logarithm \ln. Calculate their derivatives. Let $y=\cosh x=\frac{e^{2 x}+1}{2 e^{x}}$. Solving the quadratic $\left(e^{x}\right)^{2}-2 y e^{x}+1=0$ in e^{x} yields
$$
e^{x}=y \pm \sqrt{y^{2}-1}
$$
and since $e^{x}>0$ we have, for $y \in(1, \infty)$,
$$
\cosh ^{-1} y=x=\ln \left(y+\sqrt{y^{2}-1}\right)
$$

Similarly, solving $y=\sinh x=\frac{e^{2 x}-1}{2 e^{x}}$ for e^{x} yields, for $y \in(-\infty, \infty)$,

$$
\sinh ^{-1} y=x=\ln \left(y+\sqrt{y^{2}+1}\right)
$$

Finally, let $y=\tanh x=\frac{e^{2 x}-1}{e^{2 x}+1}$. Solving the quadratic $(1-y)\left(e^{x}\right)^{2}=1+y$ that this gives, we have, for $y \in(-1,1)$,

$$
\tanh ^{-1} y=x=\ln \sqrt{\frac{1+y}{1-y}}=\frac{1}{2} \ln \frac{1+y}{1-y} .
$$

The derivatives of the inverse hyperbolic functions can be calculated in a similar way to the trigonometric functions in question 5(iii), or, since we have explicit expressions for these inverse functions in terms of natural logarithms and $\frac{\mathrm{d}}{\mathrm{d} x} \ln f(x)=\frac{f^{\prime}(x)}{f(x)}$ for a differentiable function with range contained in $(0, \infty)$, we can use the chain rule to calculate:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} y} \cosh ^{-1} y=\frac{\mathrm{d}}{\mathrm{~d} y} \ln \left(y+\sqrt{y^{2}-1}\right)=\frac{1+y\left(y^{2}-1\right)^{-\frac{1}{2}}}{y+\left(y^{2}-1\right)^{\frac{1}{2}}}=\frac{\left(y^{2}-1\right)^{\frac{1}{2}}+y}{\left(y^{2}-1\right)^{\frac{1}{2}}\left(y+\left(y^{2}-1\right)^{\frac{1}{2}}\right)}=\frac{1}{\sqrt{y^{2}-1}}, \\
& \frac{\mathrm{~d}}{\mathrm{~d} y} \sinh ^{-1} y=\frac{\mathrm{d}}{\mathrm{~d} y} \ln \left(y+\sqrt{y^{2}+1}\right)=\frac{1+y\left(y^{2}+1\right)^{-\frac{1}{2}}}{y+\left(y^{2}+1\right)^{\frac{1}{2}}}=\frac{\left(y^{2}+1\right)^{\frac{1}{2}}+y}{\left(y^{2}+1\right)^{\frac{1}{2}}\left(y+\left(y^{2}+1\right)^{\frac{1}{2}}\right)}=\frac{1}{\sqrt{y^{2}+1}},
\end{aligned}
$$

and

$$
\frac{\mathrm{d}}{\mathrm{~d} y} \tanh ^{-1} y=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} y}[\ln (1+y)-\ln (1-y)]=\frac{1}{2}\left[\frac{1}{1+y}+\frac{1}{1-y}\right]=\frac{1}{(1+y)(1-y)}=\frac{1}{1-y^{2}} .
$$

[^0]: ${ }^{1}$ The inverse function $\sin ^{-1}:[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ does not have two-sided limits at $y= \pm 1$ so derivatives are not defined at these endpoints (the graph of $\sin ^{-1} y$ has asymptotes $y= \pm 1$, the derivative/slope approaches infinity as $y \rightarrow \pm 1$). The function $\sin :\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1]$ extends by periodicity to all of \mathbb{R} and is differentiable everywhere with derivative $\cos x$.

