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4. For q ∈ Q, let gq : R→ R be defined by gq(x) = xq sin
(
1
x

)
if x 6= 0 and gq(0) = 0.

In this question we use the fact that xq is differentiable on R\{0}, with derivative qxq−1 when q 6= 0
(also at 0 with derivative 0 when q > 0), and sin

(
1
x

)
is differentiable on R\{0} (as the composition of

differentiable functions sinx and 1
x on R \ {0}) and the product and composition rules for derivatives.

We also use the result of question 5(ii) that sinx is differentiable on R with derivative equal to cosx.
Thus, for q 6= 0 and x 6= 0,

g′q(x) = xq
d

dx
sin

(
1

x

)
+ qxq−1 sin

(
1

x

)
= xq

[(
− 1

x2

)
cos

(
1

x

)]
+ qxq−1 sin

(
1

x

)
= qxq−1 sin

(
1

x

)
− xq−2 cos

(
1

x

)
When q = 0, g′0(x) =

(
− 1
x2

)
cos
(
1
x

)
for x 6= 0, while by part (i) g0 is not even continous at 0 so in

particular has no derivative at 0.

(i) Show that the function g0(x) = sin
(
1
x

)
is not continuous at 0, and that g1(x) is continuous at 0

but not differentiable at 0.

We show that g0(x) is not continuous at 0 by producing two sequences (an) and (bn) both
convergent to 0 and such that (g0(an)) and (g(bn)) converge to different limits. With a view to
this, take an = 1

2πn and bn = 1
π/2+2πn . Then g0(an) = 0 while g0(bn) = 1.

The function g1(x) is continuous on R\{0} since it is the product of functions with this property.
Continuity at 0 follows from limx→0 g1(x) = limx→0 x sin

(
1
x

)
= 0 = g1(0). (Use |x sin 1

x | ≤ |x| →
0. This is question 3(i).)

(ii) Prove that g2 is differentiable on R and calculate g′2(x). Show that g′2(x) is discontinuous at 0.

The derivative of g2 at 0 exists as it is given by

g′2(0) = lim
h→0

h2 sin
(
1
h

)
h

= lim
h→0

h sin

(
1

h

)
= lim

h→0
g1(h)

= 0

the last equality by part (i), in which it is shown that g1(x) is continuous at 0.

Hence

g′2(x) =

{
2x sin

(
1
x

)
− cos

(
1
x

)
x 6= 0

0 x = 0.
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The limit of g′2(x) as x→ 0 does not exist since while 2x sin
(
1
x

)
→ 0 as x→ 0 the second term

cos
(
1
x

)
does not have a limit as x→ 0.

(Proof just as for sin
(
1
x

)
: exhibit two sequences (xn) → 0 for which

(
cos
(

1
xn

))
converges to

different limits.)

Hence g′2 is not continuous at 0.

(iii) Find a particular (potentially noninteger) value for q so that

(a) gq is differentiable on R but such that g′q is unbounded on [0, 1]. We have

g′q(x) =

{
qxq−1 sin

(
1
x

)
− xq−2 cos

(
1
x

)
x 6= 0

limh→0 gq−1(h) x = 0 when the limit exists.

For differentiability of gq(x) at 0 we require continuity of gq−1(x) at 0, i.e., q > 1.

For unboundedness of g′q(x) on [0, 1] we require q < 2 (when xq−2 cos
(
1
x

)
is unbounded,

while qxq−1 sin
(
1
x

)
is bounded for q ≥ 1; otherwise both terms are bounded for x ∈ (0, 1]).

Hence for gq(x) to be differentiable on R while g′q(x) is unbounded on [0, 1] any value

q ∈ (1, 2) will serve, e.g. q = 1
2 .

(b) gq is differentiable on R with g′q continuous but not differentiable at 0.

Continuity of g′q(x) at 0 (and hence all of R) requires q > 2 (for xq−2 cos
(
1
x

)
to have a

limit as x → 0). For g′q not to be differentiable at 0 either gq−1 is not differentiable at 0

(q < 2) or xq−2 cos
(
1
x

)
is not differentiable at 0, which is the case iff q ≤ 3. (The proof that

x cos
(
1
x

)
is not differentiable at 0 is analogous to showing g1(x) is not differentiable at 0.)

Hence for any q ∈ (2, 3] the function gq(x) is differentiable on R and g′q(x) is continuous
but not differentiable at 0. For example, q = 3.

(c) gq is differentiable on R and g′q is differentiable on R, but such that g′′q is discontinuous at 0.
By the sum, product and composition rules for differentiation, for x 6= 0,

g′′q (x) = q(q−1)xq−2 sin

(
1

x

)
+ qxq−1(−x−2) cos

(
1

x

)
− (q−2)xq−3 cos

(
1

x

)
+ xq−2x−2 sin

(
1

x

)
= q(q − 1)xq−2 sin

(
1

x

)
− 2(q − 1)xq−3 cos

(
1

x

)
+ xq−4 sin

(
1

x

)
while for x = 0,

g′′q (0) = lim
h→0

g′q(h)− g′q(0)

h
= lim

h→0

[
qhq−2 sin

(
1

h

)
− hq−3 cos

(
1

h

)]
which exists iff q > 3. (The limit is 0 when it exists.)

For g′′q (x) to be discontinuous at 0 we require q ≤ 4 (so that xq−4 sin
(
1
x

)
is discontinuous

at 0; the other terms in the sum above giving g′′q (x) are continuous at 0 for q > 3).

Hence we may take any value of q ∈ (3, 4], such as q = 4, and gq will have the required
properties.

5.

(i) A function f : R → R is called periodic with period T if f(x + T ) = f(x) for all x ∈ R. Prove
that if f is a periodic function that is differentiable everywhere then f ′(x) is periodic as well.
What is the period of f ′?

T is a period of f ′ as well since

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

f(x+ T + h)− f(x+ T )

h
= f ′(x+ T + h).

Therefore f ′ is periodic with period T .
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(ii) Calculate the derivative of the functions sinx and cosx. Deduce the derivative of tanx from
these. [For calculating the derivative of sinx use the identity sin(x+h) = sinx cosh+sinh cosx,
while for cosx you might use the analogous identity, or use cosx = sin(x+ π

2 ).]

d

dx
sinx = lim

h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cosh+ sinh cosx− sinx

h

= lim
h→0

[
sinx

cosh− 1

h
+ cosx

sinh

h

]
= sinx lim

h→0

cosh− 1

h
+ cosx lim

h→0

sinh

h

= sinx · 0 + cosx · 1
= cosx,

where we have used limh→0
sinh
h = 1 from question 3(ii) and

lim
h→0

cosh− 1

h
= lim

h→0

(cosh− 1)(cosh+ 1)

h(cosh+ 1)

= lim
h→0

cos2 h− 1

h(cosh+ 1)

= lim
h→0

− sin2 h

h(cosh+ 1)

= lim
h→0

sinh

h
· − sinh

cosh+ 1

= 1 · 0 = 0

Using cosx = sin(x+ π
2 ) and the chain rule,

d

dx
cosx =

d

dx
sin(x+

π

2
)

= cos(x+
π

2
)

= − sinx

Using the rule for differentiating the quotient of two functions,

d

dx
tanx =

d

dx

(
sinx

cosx

)
=

cosx · cosx− (− sinx) sinx

cos2 x

=
1

cos2 x
= sec2 x = 1 + tan2 x

(iii) Write down domains for the functions sin and cos restricted to which these functions become
bijections. Calculate the derivatives of the inverse functions sin−1 and cos−1.

We have bijections sin : [−π
2 ,

π
2 ]→ [−1, 1], cos : [0, π]→ [−1, 1] and tan(−π

2 ,
π
2 )→ (−∞,∞).

Let x = sin−1 y, for y ∈ [−1, 1]. Differentiating the identity sinx = sin(sin−1 y) = y, for
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y ∈ (−1, 1),1 we obtain by the chain rule

1 =
d

dy
sin(sin−1 y)

=
d

dy
(sin−1 y) cos(x)

from which
d

dy
(sin−1 y) =

1

cosx
=

1√
1− sin2 x

=
1√

1− y2
.

Similarly, differentiating cosx = cos(cos−1 y) = y (y ∈ (−1, 1)) yields

d

dy
(cos−1 y) = − 1√

1− y2
.

For x = tan−1 y, y ∈ R, differentiating y = tan(tan−1 y) yields

1 =
d

dy
tan(tan−1 y)

=
d

dy
(tan−1 y) ·

(
1 + tan2 x

)
=

d

dy
(tan−1 y) · (1 + y2),

whence d
dy (tan−1 y) = 1

1+y2
.

6. The hyperbolic functions sinh, cosh, tanh : R→ R are defined for x ∈ R by

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
, tanhx =

sinhx

coshx
.

(i) Determine the range of each function sinh, cosh and tanh.

We have 0 < ex < 1 for x < 0 and 1 ≤ ex < ∞ for x ≥ 0 (and the exponential function is a

bijection (−∞,∞)→ (0,∞). Hence 1 < coshx = ex+e−x

2 <∞ and −∞ < sinhx = ex−e−x
2 <∞.

Also

tanhx =
sinhx

coshx
=
ex − e−x

ex + e−x
=
e2x − 1

e2x + 1

takes values between 0+1
0−1 = −1 and 1 (the limiting value of y−1

y+1 as y →∞).

Hence cosh : (−∞,∞)→ (1,∞), sinh : (−∞,∞)→ (−∞,∞) and tanh : (−∞,∞)→ (−1, 1).

(ii) Calculate the derivatives of sinh, cosh and tanh. Using d
dxe

x = ex, d
dxe
−x = −ex

d

dx
coshx =

ex − e−x

2
= sinhx,

d

dx
sinhx =

ex + e−x

2
= coshx,

and, using the quotient rule for derviatives,

d

dx
tanhx =

d

dx

sinhx

coshx
=

sinh2 x− cosh2 x

cosh2 x
=

1

cosh2 x
= 1− tanh2 x.

1The inverse function sin−1 : [−1, 1]→ [−π
2
, π
2

] does not have two-sided limits at y = ±1 so derivatives are not defined
at these endpoints (the graph of sin−1 y has asymptotes y = ±1, the derivative/slope approaches infinity as y → ±1).
The function sin : [−π

2
, π
2

] → [−1, 1] extends by periodicity to all of R and is differentiable everywhere with derivative
cosx.
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(iii) Find an expression for the inverse functions sinh−1, cosh−1 and tanh−1 in terms of the natural

logarithm ln. Calculate their derivatives. Let y = coshx = e2x+1
2ex . Solving the quadratic

(ex)2 − 2yex + 1 = 0 in ex yields

ex = y ±
√
y2 − 1

and since ex > 0 we have, for y ∈ (1,∞),

cosh−1 y = x = ln(y +
√
y2 − 1).

Similarly, solving y = sinhx = e2x−1
2ex for ex yields, for y ∈ (−∞,∞),

sinh−1 y = x = ln(y +
√
y2 + 1).

Finally, let y = tanhx = e2x−1
e2x+1

. Solving the quadratic (1 − y)(ex)2 = 1 + y that this gives, we
have, for y ∈ (−1, 1),

tanh−1 y = x = ln

√
1 + y

1− y
=

1

2
ln

1 + y

1− y
.

The derivatives of the inverse hyperbolic functions can be calculated in a similar way to the
trigonometric functions in question 5(iii), or, since we have explicit expressions for these inverse

functions in terms of natural logarithms and d
dx ln f(x) = f ′(x)

f(x) for a differentiable function with

range contained in (0,∞), we can use the chain rule to calculate:

d

dy
cosh−1 y =

d

dy
ln(y +

√
y2 − 1) =

1 + y(y2 − 1)−
1
2

y + (y2 − 1)
1
2

=
(y2 − 1)

1
2 + y

(y2 − 1)
1
2 (y + (y2 − 1)

1
2 )

=
1√
y2 − 1

,

d

dy
sinh−1 y =

d

dy
ln(y +

√
y2 + 1) =

1 + y(y2 + 1)−
1
2

y + (y2 + 1)
1
2

=
(y2 + 1)

1
2 + y

(y2 + 1)
1
2 (y + (y2 + 1)

1
2 )

=
1√
y2 + 1

,

and

d

dy
tanh−1 y =

1

2

d

dy
[ln(1 + y)− ln(1− y)] =

1

2

[
1

1 + y
+

1

1− y

]
=

1

(1 + y)(1− y)
=

1

1− y2
.
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