Mathematical Analysis I

Exercise sheet 9

10 December 2015

References: Abbott 4.5, 4.6, 5.2. Bartle \& Sherbert 5.3, 6.1

1. State the Intermediate Value Theorem
(ii) Prove that a polynomial of odd degree has at least one real root.
(iii) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is monotone increasing. Prove that if for each $d \in[f(a), f(b)]$ there is $c \in[a, b]$ such that $f(c)=d$ then f is continuous. [This gives a converse to the Intermediate Value Theorem for monotone functions.]
2.

(i) Let $f:[a, b] \rightarrow[a, b]$ be a continuous function. Prove that f must have a fixed point. i.e., that $f(c)=c$ for at least one value of $c \in[a, b]$. [This is a special case of the Brouwer Fixed-Point Theorem.]
(ii) Show that if a continuous function $f:[0,1] \rightarrow[0,1]$ has an infinite set of fixed points then not all fixed points are isolated points, i.e., there is a fixed point of f that is a limit point of other fixed points of f.
(iii) Let $f:[0,1] \rightarrow[0,1]$ be defined by

$$
f(x)= \begin{cases}x & x \in \mathbb{Q} \cap[0,1] \\ 1-x & x \in(\mathbb{R} \backslash \mathbb{Q}) \cap[0,1]\end{cases}
$$

Show that f is bijective, that $f(f(x))=x$ and that f is continuous only at the point $\frac{1}{2}$.
3. Evaluate the following limits:
(i) $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)$.
(ii) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$. [You may assume the inequalities $\sin x<x<\tan x$. From these you can then derive inequalities that will enable you to apply the Squeeze Theorem to deduce the limiting value of $\frac{\sin x}{x}$.]
(iii) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$.
4. For $q \in \mathbb{Q}$, let $g_{q}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g_{q}(x)=x^{q} \sin \left(\frac{1}{x}\right)$ if $x \neq 0$ and $g_{q}(0)=0$.
(i) Show that the function $g_{0}(x)=\sin \left(\frac{1}{x}\right)$ is not continuous at 0 , and that $g_{1}(x)$ is continuous at 0 but not differentiable at 0 .
(ii) Prove that g_{2} is differentiable on \mathbb{R} and calculate $g_{2}^{\prime}(x)$. Show that $g_{2}^{\prime}(x)$ is discontinuous at 0 .
(iii) Find a particular (potentially noninteger) value for q so that
(a) g_{q} is differentiable on \mathbb{R} but such that g_{q}^{\prime} is unbounded on $[0,1]$.
(b) g_{q} is differentiable on \mathbb{R} with g_{q}^{\prime} continuous but not differentiable at 0 .
(c) g_{q} is differentiable on \mathbb{R} and g_{q}^{\prime} is differentiable on \mathbb{R}, but such that $g_{q}^{\prime \prime}$ is discontinuous at 0 .
5.
(i) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic with period T if $f(x+T)=f(x)$ for all $x \in \mathbb{R}$. Prove that if f is a periodic function that is differentiable everywhere then $f^{\prime}(x)$ is periodic as well. What is the period of f^{\prime} ?
(ii) Calculate the derivative of the functions $\sin x$ and $\cos x$. Deduce the derivative of $\tan x$ from these. [For calculating the derivative of $\sin x$ use the identity $\sin (x+h)=\sin x \cos h+\sin h \cos x$, while for $\cos x$ you might use the analogous identity, or use $\cos x=\sin \left(x+\frac{\pi}{2}\right)$.]
(iii) Write down domains for the functions sin and cos restricted to which these functions become bijections. Calculate the derivatives of the inverse functions $\sin ^{-1}$ and $\cos ^{-1}$.
6. The hyperbolic functions \sinh, cosh, $\tanh : \mathbb{R} \rightarrow \mathbb{R}$ are defined for $x \in \mathbb{R}$ by

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}, \quad \sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \tanh x=\frac{\sinh x}{\cosh x}
$$

(i) Determine the range of each function sinh, cosh and tanh.
(ii) Calculate the derivatives of sinh, cosh and tanh.
(iii) Find an expression for the inverse functions $\sinh ^{-1}, \cosh ^{-1}$ and $\tanh ^{-1}$ in terms of the natural logarithm \ln. Calculate their derivatives.

