Mathematical Analysis I

Exercise sheet 9

10 December 2015

References: Abbott 4.5, 4.6, 5.2. Bartle & Sherbert 5.3, 6.1

- 1. State the Intermediate Value Theorem
 - (ii) Prove that a polynomial of odd degree has at least one real root.
- (iii) Suppose that $f : [a, b] \to \mathbb{R}$ is monotone increasing. Prove that if for each $d \in [f(a), f(b)]$ there is $c \in [a, b]$ such that f(c) = d then f is continuous. [This gives a converse to the Intermediate Value Theorem for monotone functions.]

2.

- (i) Let $f : [a, b] \to [a, b]$ be a continuous function. Prove that f must have a fixed point. i.e., that f(c) = c for at least one value of $c \in [a, b]$. [This is a special case of the Brouwer Fixed-Point Theorem.]
- (ii) Show that if a continuous function $f : [0, 1] \to [0, 1]$ has an infinite set of fixed points then not all fixed points are isolated points, i.e., there is a fixed point of f that is a limit point of other fixed points of f.
- (iii) Let $f: [0,1] \to [0,1]$ be defined by

$$f(x) = \begin{cases} x & x \in \mathbb{Q} \cap [0, 1] \\ 1 - x & x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \end{cases}$$

Show that f is bijective, that f(f(x)) = x and that f is continuous only at the point $\frac{1}{2}$.

- 3. Evaluate the following limits:
 - (i) $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$.
 - (ii) $\lim_{x\to 0} \frac{\sin x}{x}$. [You may assume the inequalities $\sin x < x < \tan x$. From these you can then derive inequalities that will enable you to apply the Squeeze Theorem to deduce the limiting value of $\frac{\sin x}{x}$.]
- (iii) $\lim_{x\to 0} \frac{e^x 1}{x}$.

4. For $q \in \mathbb{Q}$, let $g_q : \mathbb{R} \to \mathbb{R}$ be defined by $g_q(x) = x^q \sin\left(\frac{1}{x}\right)$ if $x \neq 0$ and $g_q(0) = 0$.

- (i) Show that the function $g_0(x) = \sin\left(\frac{1}{x}\right)$ is not continuous at 0, and that $g_1(x)$ is continuous at 0 but not differentiable at 0.
- (ii) Prove that g_2 is differentiable on \mathbb{R} and calculate $g'_2(x)$. Show that $g'_2(x)$ is discontinuous at 0.
- (iii) Find a particular (potentially noninteger) value for q so that
 - (a) g_q is differentiable on \mathbb{R} but such that g'_q is unbounded on [0, 1].
 - (b) g_q is differentiable on \mathbb{R} with g'_q continuous but not differentiable at 0.
 - (c) g_q is differentiable on \mathbb{R} and g'_q is differentiable on \mathbb{R} , but such that g''_q is discontinuous at 0.

- (i) A function $f : \mathbb{R} \to \mathbb{R}$ is called periodic with period T if f(x + T) = f(x) for all $x \in \mathbb{R}$. Prove that if f is a periodic function that is differentiable everywhere then f'(x) is periodic as well. What is the period of f'?
- (ii) Calculate the derivative of the functions $\sin x$ and $\cos x$. Deduce the derivative of $\tan x$ from these. [For calculating the derivative of $\sin x$ use the identity $\sin(x+h) = \sin x \cos h + \sin h \cos x$, while for $\cos x$ you might use the analogous identity, or use $\cos x = \sin(x + \frac{\pi}{2})$.]
- (iii) Write down domains for the functions sin and cos restricted to which these functions become bijections. Calculate the derivatives of the inverse functions \sin^{-1} and \cos^{-1} .
- 6. The hyperbolic functions sinh, $\cosh, \tanh : \mathbb{R} \to \mathbb{R}$ are defined for $x \in \mathbb{R}$ by

$$\cosh x = \frac{e^x + e^{-x}}{2}, \quad \sinh x = \frac{e^x - e^{-x}}{2}, \quad \tanh x = \frac{\sinh x}{\cosh x}.$$

- (i) Determine the range of each function sinh, cosh and tanh.
- (ii) Calculate the derivatives of sinh, cosh and tanh.
- (iii) Find an expression for the inverse functions \sinh^{-1} , \cosh^{-1} and \tanh^{-1} in terms of the natural logarithm ln. Calculate their derivatives.