
Mathematical Analysis I

Exercise sheet 8

Solutions to selected exercises

3 December 2015

References: Abbott 4.2, 4.3. Bartle & Sherbert 4.1, 4.2, 5.1, 5.2

4. Let g : R→ R be defined by g(x) = 3
√
x.

(ii) Show that g is continuous at c = 0. We have | 3
√
x− 3
√

0| = 3
√
|x| < ε when |x− 0| = |x| < ε3.

(iii) Prove that g is continuous at a point c 6= 0. Take first c > 0. Then for x > 0, using the identity
a3 − b3 = (a− b)(a2 + ab+ b2), we have

| 3
√
x− 3
√
c| = |x− c|

3
√
x2 + 3

√
xc+

3
√
c2

in which the denominator on the right-hand side is bounded below by
3
√
c2. Hence,

| 3
√
x− 3
√
c| < |x− c|

3
√
c2

and taking δ = min{ 3
√
c2ε, c} we have | 3

√
x − 3
√
c| < ε when |x − c| < δ. (We required x > 0 to

apply the bound on the denominator above, hence this condition that x−c > −c is incorporated
into |x− c| < δ by making sure δ ≤ c.)
When c < 0 use the fact that 3

√
c = − 3

√
−c and use continuity of the cube root at −c > 0 to

deduce continuity at c.

(iv) Assuming the result of question 3(iv), deduce that 3
√
p(x) is continuous on R for any polynomial

p(x) with real coefficients.

Question 3(iv) states that a polynomial p(x) with real coefficients is continuous at c for any
c ∈ R. By applying the first part of this question (the composition of continuous functions is
continuous) to p : R→ R and g : R→ R defined by g(x) = 3

√
x, we deduce that the composition

g ◦ p is continuous on R.

5. For each of the following choices of A, construct a a function f : R→ R which has discontinuities
at every point of A and is continuous on the complement R \A:

(i) A = Z
Define f : R → Z by f(x) = bxc, the greatest integer less than or equal to x. Thus bxc ≤ x <
bxc+ 1.

For z ∈ Z, the sequence (xn) defined by xn = z − 1
n converges to z while (f(xn)) converges to

z − 1 6= f(z) = z, since f(xn) = z − 1 for all n.

On the other hand, for c ∈ R\Z there is z ∈ Z such that z < c < z+1. Set δ = min{c−z, z+1−c}.
Then f(x) = f(c) for |x− c| < δ, and so |f(x)− f(c)| < ε for any given ε > 0 when |x− c| < δ.
This says f is continuous at c.
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(ii) A = {x : 0 < x < 1}
For (ii) and (iii) we shall use as a building block the Dirichlet function f : R→ R, defined by

f(x) =

{
1 x ∈ Q
0 x 6∈ Q

is not continuous at any point in R. (Proof sketch: use density of Q and of R \Q in R to show
that for any c ∈ R there are sequences (an) of rationals convergent to c and sequences (bn) of
irrationals (bn) also convergent to c.) Also useful is the modified Dirichlet function

f(x) =

{
x x ∈ Q
0 x 6∈ Q

which is continous at 0 and nowhere else. See Abbott §4.1 for a discussion of these functions
and Thomae’s function (continous precisely at irrational points).

The function f : R→ R defined by

f(x) =


x x ∈ Q, 0 < x ≤ 1

2

1− x x ∈ Q, 12 < x < 1

0 otherwise,

is not continous on {x : 0 < x < 1} (for the same reason as the modified Dirichlet function on
R) but is continuous outside this interval (f(x)→ 0 = f(c) as x→ c when c ≤ 0 or c ≥ 1).

(iii) A = {x : 0 ≤ x < 1} The function f : R→ R defined by

f(x) =


0 x ≤ 0,

x x ∈ Q, 0 < x < 1

1 otherwise,

is not continuous on {x : 0 ≤ x < 1} (due to density of irrationals in this interval, where f takes
the value 1) but is continuous outside this interval (f(x) → 0 = f(c) as x → c when c < 0 and
f(x)→ 1 = f(c) when c ≥ 1).

(iv) A = { 1n : n ∈ N} One example is the function

f(x) =

{⌊
1
x

⌋
x ≥ 1

0 x < 1,

is discontinuous at points 1
n (see part (i)) and continuous elsewhere.

6. Let f : R→ R and assume there is a constant C such that 0 < C < 1 and

|f(x)− f(y)| ≤ C|x− y|

for all x, y ∈ R. Let fn(x) be inductively defined by f1(x) = f(x), and fn+1(x) = f(fn(x)). (We
could start from f0(x) = x.) It is useful to first prove by induction the inequality

|fn(x)− fn(y)| ≤ Cn|x− y|.

For n = 1 it is the inequality given in the question, and the inductive step is

|fn+1(x)− fn+1(y)| ≤ C|fn(x)− fn(y)| ≤ C · Cn|x− y| = Cn+1|x− y|.
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(i) Show that f is continuous on R. When |x− c| < ε/C we have

|f(x)− f(c)| ≤ C|x− c| < ε.

Hence f is continuous at any point c ∈ R.

(ii) Beginning with an initial value y1 ∈ R, define the sequence (yn) = (y1, f(y1), f(f(y1)), . . . )
recursively by setting yn+1 = f(yn). Show that (yn) is a Cauchy sequence.

In the notation introduced above, yn = fn−1(y1).

For m ≥ n ≥ 1,

|ym − yn| = |fm−1(y1)− fn−1(y1)|
≤ Cn−1|fm−n(y1)− y1|
≤ Cn−1(|fm−n(y1)− fm−n−1(y1)|+ |fm−n−1 − fm−n−2|+ · · ·+ |f(y1)− y1|)
≤ Cn−1(Cm−n−1 + Cm−n−2 + · · ·C + 1)|f(y1)− y1|

< Cn−1
∞∑
k=0

Ck|y2 − y1|

=
Cn−1

1− C
|y2 − y1|

Since (Cn−1)→ 0 (because 0 < C < 1) and |y2−y1|1−C is constant, we deduce that (yn) = (fn−1(y1))
is a Cauchy sequence (for any given ε > 0 we can choose N such that |ym−yn| < ε for m,n ≥ N).

(iii) Let y = lim yn. Prove that y is a fixed point of f (i.e., f(y) = y) and that it is the unique fixed
point of f (i.e., if f(y′) = y′ then y′ = y).

By (ii) the sequence (yn) is convergent to some limit y. Continuity of f implies that

f(y) = f( lim
n→∞

yn) = lim
n→∞

f(yn) = lim yn+1 = y.

Suppose y and y′ are fixed points, i.e., y = f(y) and y′ = f(y′). Then

0 ≤ |y − y′| = |f(y)− f(y′)| ≤ C|y − y′|

and since 0 < C < 1 this forces |y − y′| = 0, i.e., y = y′.

(iv) For an arbitrary initial value x ∈ R, show that the sequence (xn) = (x, f(x), f(f(x)), . . . ) defined
recursively by xn+1 = f(xn) is convergent to the value y defined in (iii).

In the notation introduced above, xn+1 = fn(x) and

|fn(x)− y| = |f(fn−1(x)− f(y)|
≤ C|fn−1(x)− y|

and by induction on n
|fn(x)− y| ≤ Cn|x− y|.

(Base n = 1 is |f(x)− y| = |f(x)− f(y)| ≤ C|x− y|. Inductive step is |fn+1 − y| = |f(fn(x))−
f(y)| ≤ C|fn(x)− y| ≤ C · Cn|x− y| = Cn+1|x− y|.)
Hence fn(x)→ y as n→∞, since Cn → 0 as n→∞, i.e., (xn)→ y.

[The result of this question is known as the Contraction Mapping Theorem, or Banach’s Fixed
Point Theorem.]
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