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4. Let g: R — R be defined by g(x) = /.

(i)
(iii)

Show that ¢ is continuous at ¢ = 0. We have |z — /0| = ¥/|z| < € when |z — 0| = |z| < €.
Prove that ¢ is continuous at a point ¢ # 0. Take first ¢ > 0. Then for > 0, using the identity
a® — b3 = (a — b)(a® + ab + b?), we have

|z = ¢

Va — Vel =
| | V2 + Yac+ Ve?

in which the denominator on the right-hand side is bounded below by v/¢2. Hence,

[z — ¢
Ve?

and taking § = min{V/c2¢, ¢} we have |z — ¢/c| < € when |z — ¢| < §. (We required z > 0 to
apply the bound on the denominator above, hence this condition that £ —c¢ > —c is incorporated
into |z — ¢| < ¢ by making sure ¢ < ¢.)

When ¢ < 0 use the fact that </c = —/—c and use continuity of the cube root at —c¢ > 0 to
deduce continuity at c.

V& — el <

Assuming the result of question 3(iv), deduce that {/p(z) is continuous on R for any polynomial
p(x) with real coefficients.

Question 3(iv) states that a polynomial p(z) with real coefficients is continuous at ¢ for any
¢ € R. By applying the first part of this question (the composition of continuous functions is
continuous) to p: R — R and g : R — R defined by g(x) = /z, we deduce that the composition
g o p is continuous on R.

5. For each of the following choices of A, construct a a function f : R — R which has discontinuities
at every point of A and is continuous on the complement R\ A:

(i)

A=7

Define f : R — Z by f(z) = |z], the greatest integer less than or equal to z. Thus |z] < z <
|z] + 1.

For z € Z, the sequence () defined by z,, = z — 1 converges to 2 while (f(z,)) converges to
z—1%# f(z) = z, since f(z,) =z — 1 for all n.

On the other hand, for ¢ € R\Z there is z € Z such that z < ¢ < z+1. Set 6 = min{c—z, z+1—c}.
Then f(z) = f(c) for |z —¢| < ¢, and so |f(x) — f(c)| < € for any given € > 0 when |z — ¢| < 6.
This says f is continuous at c.



(i) A={z:0<x <1}

For (ii) and (iii) we shall use as a building block the Dirichlet function f : R — R, defined by

)1 zeQ

is not continuous at any point in R. (Proof sketch: use density of Q and of R\ Q in R to show
that for any ¢ € R there are sequences (a,) of rationals convergent to ¢ and sequences (b,,) of
irrationals (by,) also convergent to c.) Also useful is the modified Dirichlet function

_Jr z€Q

which is continous at 0 and nowhere else. See Abbott §4.1 for a discussion of these functions
and Thomae’s function (continous precisely at irrational points).

The function f: R — R defined by

T $€Q,O<.’L‘§%
fl@)=<S1-2 z€eQ,3<z<1
0 otherwise,

is not continous on {z : 0 < x < 1} (for the same reason as the modified Dirichlet function on
R) but is continuous outside this interval (f(z) — 0= f(c) as * — ¢ when ¢ < 0 or ¢ > 1).

(iii) A= {z:0 <2 < 1} The function f:R — R defined by

6.

0 =<0,
flx)=<z z€Q0<z<1

1 otherwise,

is not continuous on {z : 0 < z < 1} (due to density of irrationals in this interval, where f takes
the value 1) but is continuous outside this interval (f(z) — 0 = f(c) as * — ¢ when ¢ < 0 and
f(z) = 1= f(c) when ¢ > 1).

(iv) A= {1 :n e N} One example is the function

f(m)z{LxJ e

0 <1,

is discontinuous at points 1 (see part (i)) and continuous elsewhere.

Let f: R — R and assume there is a constant C' such that 0 < C' < 1 and

|f(z) — f(y)| < Clz —y]

for all z,y € R. Let f*(x) be inductively defined by fl(x) = f(x), and f**(x) = f(f"(x)). (We
could start from f(x) = z.) It is useful to first prove by induction the inequality

/(@) = [ ()] < C"a —yl.

For n =1 it is the inequality given in the question, and the inductive step is

[ (@) = ) < Ol (@) = )l < C- CMw —y| = C™ o —y).



(i) Show that f is continuous on B. When |z — ¢| < ¢/C we have
[f(z) = flo)| < Clz—d <e
Hence f is continuous at any point ¢ € R.
(ii) Beginning with an initial value y; € R, define the sequence (y,) = (y1, f(v1), f(f(y1)),-..)
recursively by setting y,+1 = f(yn). Show that (y,) is a Cauchy sequence.
In the notation introduced above, y, = f*~!(y1).

Form>n>1,

Ym — ynl = [F™ 1) — 7 ()]
<) —
<SC T w) = ST ) H T = TR 4 () — )
<criem Tt o 4 C 4 )| f(yn) —

oo
<C"Y CHMya —
k=0
n—1

= 1_c|y2_y1|

Since (C™™1) — 0 (because 0 < C' < 1) and % is constant, we deduce that (y,) = (f* 1 (y1))
is a Cauchy sequence (for any given € > 0 we can choose N such that |y,, —y,| < € for m,n > N).

(iii) Let y = limy,. Prove that y is a fixed point of f (i.e., f(y) = y) and that it is the unique fixed
point of f (i.e., if f(y') =y then ¢ =y).

By (ii) the sequence (y;,) is convergent to some limit y. Continuity of f implies that

fly) = f(lim y,) = lim f(yn) =limyn1 =y.

n-y00
Suppose y and y' are fixed points, i.e., y = f(y) and ¥’ = f(y'). Then

0<ly—yI=1fy) - fW) <Cly—v
and since 0 < C' < 1 this forces |y — /| =0, i.e., y = y.

(iv) For an arbitrary initial value = € R, show that the sequence (z,,) = (z, f(x), f(f(z)),...) defined
recursively by x,4+1 = f(x,) is convergent to the value y defined in (iii).

In the notation introduced above, z,4+1 = f™(x) and

™ (x) =yl = [F(f* @) = f()
< Of" ) —yl
and by induction on n
|f"(x) =yl < C"| —yl.

(Base n = 1is |f(z) —y| = |f(x) — f(y)| < Clz — y|. Inductive step is |f*T —y| = |f(f"(z)) —
FWI < Clf"(x) —y| < C-CMax —y| = C" |z —y|.)

Hence f"(x) — y as n — oo, since C" — 0 as n — oo, i.e., (x,) = ¥.

[The result of this question is known as the Contraction Mapping Theorem, or Banach’s Fixed
Point Theorem.|



