Mathematical Analysis I

Exercise sheet 8

Solutions to selected exercises
3 December 2015

References: Abbott 4.2, 4.3. Bartle \& Sherbert 4.1, 4.2, 5.1, 5.2

4. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x)=\sqrt[3]{x}$.
(ii) Show that g is continuous at $c=0$. We have $|\sqrt[3]{x}-\sqrt[3]{0}|=\sqrt[3]{|x|}<\epsilon$ when $|x-0|=|x|<\epsilon^{3}$.
(iii) Prove that g is continuous at a point $c \neq 0$. Take first $c>0$. Then for $x>0$, using the identity $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$, we have

$$
|\sqrt[3]{x}-\sqrt[3]{c}|=\frac{|x-c|}{\sqrt[3]{x^{2}}+\sqrt[3]{x c}+\sqrt[3]{c^{2}}}
$$

in which the denominator on the right-hand side is bounded below by $\sqrt[3]{c^{2}}$. Hence,

$$
|\sqrt[3]{x}-\sqrt[3]{c}|<\frac{|x-c|}{\sqrt[3]{c^{2}}}
$$

and taking $\delta=\min \left\{\sqrt[3]{c^{2}} \epsilon, c\right\}$ we have $|\sqrt[3]{x}-\sqrt[3]{c}|<\epsilon$ when $|x-c|<\delta$. (We required $x>0$ to apply the bound on the denominator above, hence this condition that $x-c>-c$ is incorporated into $|x-c|<\delta$ by making sure $\delta \leq c$.)
When $c<0$ use the fact that $\sqrt[3]{c}=-\sqrt[3]{-c}$ and use continuity of the cube root at $-c>0$ to deduce continuity at c.
(iv) Assuming the result of question 3(iv), deduce that $\sqrt[3]{p(x)}$ is continuous on \mathbb{R} for any polynomial $p(x)$ with real coefficients.
Question 3(iv) states that a polynomial $p(x)$ with real coefficients is continuous at c for any $c \in \mathbb{R}$. By applying the first part of this question (the composition of continuous functions is continuous) to $p: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x)=\sqrt[3]{x}$, we deduce that the composition $g \circ p$ is continuous on \mathbb{R}.
5. For each of the following choices of A, construct a a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which has discontinuities at every point of A and is continuous on the complement $\mathbb{R} \backslash A$:
(i) $A=\mathbb{Z}$

Define $f: \mathbb{R} \rightarrow \mathbb{Z}$ by $f(x)=\lfloor x\rfloor$, the greatest integer less than or equal to x. Thus $\lfloor x\rfloor \leq x<$ $\lfloor x\rfloor+1$.
For $z \in \mathbb{Z}$, the sequence (x_{n}) defined by $x_{n}=z-\frac{1}{n}$ converges to z while $\left(f\left(x_{n}\right)\right)$ converges to $z-1 \neq f(z)=z$, since $f\left(x_{n}\right)=z-1$ for all n.
On the other hand, for $c \in \mathbb{R} \backslash \mathbb{Z}$ there is $z \in \mathbb{Z}$ such that $z<c<z+1$. Set $\delta=\min \{c-z, z+1-c\}$. Then $f(x)=f(c)$ for $|x-c|<\delta$, and so $|f(x)-f(c)|<\epsilon$ for any given $\epsilon>0$ when $|x-c|<\delta$. This says f is continuous at c.
(ii) $A=\{x: 0<x<1\}$

For (ii) and (iii) we shall use as a building block the Dirichlet function $f: \mathbb{R} \rightarrow \mathbb{R}$, defined by

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

is not continuous at any point in \mathbb{R}. (Proof sketch: use density of \mathbb{Q} and of $\mathbb{R} \backslash \mathbb{Q}$ in \mathbb{R} to show that for any $c \in \mathbb{R}$ there are sequences $\left(a_{n}\right)$ of rationals convergent to c and sequences $\left(b_{n}\right)$ of irrationals $\left(b_{n}\right)$ also convergent to c.) Also useful is the modified Dirichlet function

$$
f(x)= \begin{cases}x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

which is continous at 0 and nowhere else. See Abbott $\S 4.1$ for a discussion of these functions and Thomae's function (continous precisely at irrational points).

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}x & x \in \mathbb{Q}, 0<x \leq \frac{1}{2} \\ 1-x & x \in \mathbb{Q}, \frac{1}{2}<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

is not continous on $\{x: 0<x<1\}$ (for the same reason as the modified Dirichlet function on \mathbb{R}) but is continuous outside this interval $(f(x) \rightarrow 0=f(c)$ as $x \rightarrow c$ when $c \leq 0$ or $c \geq 1)$.
(iii) $A=\{x: 0 \leq x<1\}$ The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}0 & x \leq 0 \\ x & x \in \mathbb{Q}, 0<x<1 \\ 1 & \text { otherwise }\end{cases}
$$

is not continuous on $\{x: 0 \leq x<1\}$ (due to density of irrationals in this interval, where f takes the value 1) but is continuous outside this interval $(f(x) \rightarrow 0=f(c)$ as $x \rightarrow c$ when $c<0$ and $f(x) \rightarrow 1=f(c)$ when $c \geq 1)$.
(iv) $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ One example is the function

$$
f(x)= \begin{cases}\left\lfloor\frac{1}{x}\right\rfloor & x \geq 1 \\ 0 & x<1,\end{cases}
$$

is discontinuous at points $\frac{1}{n}$ (see part (i)) and continuous elsewhere.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and assume there is a constant C such that $0<C<1$ and

$$
|f(x)-f(y)| \leq C|x-y|
$$

for all $x, y \in \mathbb{R}$. Let $f^{n}(x)$ be inductively defined by $f^{1}(x)=f(x)$, and $f^{n+1}(x)=f\left(f^{n}(x)\right)$. (We could start from $f^{0}(x)=x$.) It is useful to first prove by induction the inequality

$$
\left|f^{n}(x)-f^{n}(y)\right| \leq C^{n}|x-y|
$$

For $n=1$ it is the inequality given in the question, and the inductive step is

$$
\left|f^{n+1}(x)-f^{n+1}(y)\right| \leq C\left|f^{n}(x)-f^{n}(y)\right| \leq C \cdot C^{n}|x-y|=C^{n+1}|x-y|
$$

(i) Show that f is continuous on \mathbb{R}. When $|x-c|<\epsilon / C$ we have

$$
|f(x)-f(c)| \leq C|x-c|<\epsilon
$$

Hence f is continuous at any point $c \in \mathbb{R}$.
(ii) Beginning with an initial value $y_{1} \in \mathbb{R}$, define the sequence $\left(y_{n}\right)=\left(y_{1}, f\left(y_{1}\right), f\left(f\left(y_{1}\right)\right), \ldots\right)$ recursively by setting $y_{n+1}=f\left(y_{n}\right)$. Show that $\left(y_{n}\right)$ is a Cauchy sequence.
In the notation introduced above, $y_{n}=f^{n-1}\left(y_{1}\right)$.
For $m \geq n \geq 1$,

$$
\begin{aligned}
\left|y_{m}-y_{n}\right| & =\left|f^{m-1}\left(y_{1}\right)-f^{n-1}\left(y_{1}\right)\right| \\
& \leq C^{n-1}\left|f^{m-n}\left(y_{1}\right)-y_{1}\right| \\
& \leq C^{n-1}\left(\left|f^{m-n}\left(y_{1}\right)-f^{m-n-1}\left(y_{1}\right)\right|+\left|f^{m-n-1}-f^{m-n-2}\right|+\cdots+\left|f\left(y_{1}\right)-y_{1}\right|\right) \\
& \leq C^{n-1}\left(C^{m-n-1}+C^{m-n-2}+\cdots C+1\right)\left|f\left(y_{1}\right)-y_{1}\right| \\
& <C^{n-1} \sum_{k=0}^{\infty} C^{k}\left|y_{2}-y_{1}\right| \\
& =\frac{C^{n-1}}{1-C}\left|y_{2}-y_{1}\right|
\end{aligned}
$$

Since $\left(C^{n-1}\right) \rightarrow 0$ (because $\left.0<C<1\right)$ and $\frac{\left|y_{2}-y_{1}\right|}{1-C}$ is constant, we deduce that $\left(y_{n}\right)=\left(f^{n-1}\left(y_{1}\right)\right)$ is a Cauchy sequence (for any given $\epsilon>0$ we can choose N such that $\left|y_{m}-y_{n}\right|<\epsilon$ for $m, n \geq N$).
(iii) Let $y=\lim y_{n}$. Prove that y is a fixed point of f (i.e., $f(y)=y$) and that it is the unique fixed point of f (i.e., if $f\left(y^{\prime}\right)=y^{\prime}$ then $y^{\prime}=y$).
By (ii) the sequence $\left(y_{n}\right)$ is convergent to some limit y. Continuity of f implies that

$$
f(y)=f\left(\lim _{n \rightarrow \infty} y_{n}\right)=\lim _{n \rightarrow \infty} f\left(y_{n}\right)=\lim y_{n+1}=y
$$

Suppose y and y^{\prime} are fixed points, i.e., $y=f(y)$ and $y^{\prime}=f\left(y^{\prime}\right)$. Then

$$
0 \leq\left|y-y^{\prime}\right|=\left|f(y)-f\left(y^{\prime}\right)\right| \leq C\left|y-y^{\prime}\right|
$$

and since $0<C<1$ this forces $\left|y-y^{\prime}\right|=0$, i.e., $y=y^{\prime}$.
(iv) For an arbitrary initial value $x \in \mathbb{R}$, show that the sequence $\left(x_{n}\right)=(x, f(x), f(f(x)), \ldots)$ defined recursively by $x_{n+1}=f\left(x_{n}\right)$ is convergent to the value y defined in (iii).

In the notation introduced above, $x_{n+1}=f^{n}(x)$ and

$$
\begin{aligned}
\left|f^{n}(x)-y\right| & =\mid f\left(f^{n-1}(x)-f(y) \mid\right. \\
& \leq C\left|f^{n-1}(x)-y\right|
\end{aligned}
$$

and by induction on n

$$
\left|f^{n}(x)-y\right| \leq C^{n}|x-y|
$$

(Base $n=1$ is $|f(x)-y|=|f(x)-f(y)| \leq C|x-y|$. Inductive step is $\left|f^{n+1}-y\right|=\mid f\left(f^{n}(x)\right)-$ $\left.f(y)|\leq C| f^{n}(x)-y\left|\leq C \cdot C^{n}\right| x-y\left|=C^{n+1}\right| x-y \mid.\right)$
Hence $f^{n}(x) \rightarrow y$ as $n \rightarrow \infty$, since $C^{n} \rightarrow 0$ as $n \rightarrow \infty$, i.e., $\left(x_{n}\right) \rightarrow y$.
[The result of this question is known as the Contraction Mapping Theorem, or Banach's Fixed Point Theorem.]

