Mathematical Analysis I

Exercise sheet 8

3 December 2015

References: Abbott 4.2, 4.3. Bartle \& Sherbert 4.1, 4.2, 5.1, 5.2

1. Let $f: A \rightarrow \mathbb{R}$ and let c be a limit point of the domain A.

Define what is meant by $\lim _{x \rightarrow c} f(x)=L$.
(i) Prove that if $f\left(a_{n}\right) \rightarrow L$ for all sequences $\left(a_{n}\right)$ of points in $A \backslash\{c\}$ convergent to limit c then $\lim _{x \rightarrow c} f(x)=L$.
(ii) Prove the converse statement to (i).
(iii) Deduce from (ii) that if there is a sequence $\left(a_{n}\right)$ of points in $A \backslash\{c\}$ convergent to limit c such that the sequence $\left(f\left(a_{n}\right)\right)$ is divergent then $\lim _{x \rightarrow c} f(x)$ does not exist.
(iv) As a special case of (iii) deduce that if there are two sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ of points in $A \backslash\{c\}$ convergent to limit c but such that $\lim f\left(a_{n}\right) \neq \lim f\left(b_{n}\right)$ then $\lim _{x \rightarrow c} f(x)$ does not exist.
(v) Use (iv) to show that the signum function sgn : $\mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\operatorname{sgn}(x)= \begin{cases}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{cases}
$$

does not have a limit as $x \rightarrow 0$.
2. Show that the following limits do not exist:
(i) $\lim _{x \rightarrow 0} \frac{1}{x^{2}}(x>0)$
(ii) $\lim _{x \rightarrow 0} \frac{1}{\sqrt{x}}(x>0)$
(iii) $\lim _{x \rightarrow 0}(x+\operatorname{sgn}(x))$
(iv) $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x^{2}}\right)$
3. Let $c \in \mathbb{R}$.
(i) State the Algebraic Limit Theorem for Functional Limits.
(ii) Show that $\lim _{x \rightarrow c} a=a$ for any constant $a \in \mathbb{R}$ and that $\lim _{x \rightarrow c} x=c$.
(iii) Deduce from (ii) that $\lim _{x \rightarrow c} x^{n}=c^{n}$ for any $n \in \mathbb{N}$.
(iv) Deduce from the previous parts that if $p(x)$ is a polynomial with real coefficients then $\lim _{x \rightarrow c} p(x)=$ $p(c)$.
(v) If $p(x)$ and $q(x)$ are polynomials with real coefficients, show using the previous results that

$$
\lim _{x \rightarrow c} \frac{p(x)}{q(x)}=\frac{p(c)}{q(c)}
$$

unless $q(c)=0$, in which case the limit does not exist.
4. Let $f: A \rightarrow \mathbb{R}$ and $g: B \rightarrow \mathbb{R}$ and $f(A)=\{f(x): x \in A\} \subseteq B$.

Define what it means for f to be continuous at a point $c \in A$.
(i) Suppose that f is continuous at c and g is continuous at $f(c) \in B$. Prove that the composition $g \circ f$ is continuous at c.

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x)=\sqrt[3]{x}$.
(ii) Show that g is continuous at $c=0$
(iii) Prove that g is continuous at a point $c \neq 0$.
(iv) Assuming the result of question 3(iv), deduce that $\sqrt[3]{p(x)}$ is continuous on \mathbb{R} for any polynomial $p(x)$ with real coefficients.
5. For each of the following choices of A, construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which has discontinuities at every point of A and is continuous on the complement $\mathbb{R} \backslash A$:
(i) $A=\mathbb{Z}$
(ii) $A=\{x: 0<x<1\}$
(iii) $A=\{x: 0 \leq x<1\}$
(iv) $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and assume there is a constant C such that $0<C<1$ and

$$
|f(x)-f(y)| \leq C|x-y|
$$

for all $x, y \in \mathbb{R}$.
(i) Show that f is continuous on \mathbb{R}.
(ii) Beginning with an initial value $y_{1} \in \mathbb{R}$, define the sequence $\left(y_{n}\right)=\left(y_{1}, f\left(y_{1}\right), f\left(f\left(y_{1}\right)\right), \ldots\right)$ recursively by setting $y_{n+1}=f\left(y_{n}\right)$. Show that $\left(y_{n}\right)$ is a Cauchy sequence.
(iii) Let $y=\lim y_{n}$. Prove that y is a fixed point of f (i.e., $\left.f(y)=y\right)$ and that it is the unique fixed point of f (i.e., if $f\left(y^{\prime}\right)=y^{\prime}$ then $y^{\prime}=y$).
(iv) For an arbitrary initial value $x \in \mathbb{R}$, show that the sequence $\left(x_{n}\right)=(x, f(x), f(f(x)), \ldots)$ defined recursively by $x_{n+1}=f\left(x_{n}\right)$ is convergent to the value y defined in (iii).

