Mathematical Analysis I

Exercise sheet 7

26 November 2015

References: Abbott 2.1, 2.8, 2.9, 3.2.

1. Let the function exp : $\mathbb{R} \rightarrow \mathbb{R}$ be defined by the series

$$
\begin{equation*}
\exp (x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \tag{1}
\end{equation*}
$$

in which $0!=1=x^{0}$ and $(n+1)!=(n+1) \cdot n!$ for $n \geq 0$. In particular, $\exp (0)=1$.
(i) Show that the series in equation (1) converges for all $x \in \mathbb{R}$.
(ii) Show that the function exp satisfies the identity

$$
\exp (x+y)=\exp (x) \exp (y)
$$

for all $x, y \in \mathbb{R}$.
(iii) Let $\exp (1)=e$. Prove that $\exp (a)=e^{a}$ for $a \in \mathbb{N}$.
(iv) Show that $\exp (-a)=e^{-a}$ for $a \in \mathbb{N}$.
(v) Prove that $\exp \left(\frac{a}{b}\right)=e^{\frac{a}{b}}$ for $\frac{a}{b} \in \mathbb{Q}$.
[Later it will be shown that if $\left(\frac{a_{n}}{b_{n}}\right)$ is a sequence of rationals convergent to $x \in \mathbb{R}$ then $\lim _{n \rightarrow \infty} \exp \left(\frac{a_{n}}{b_{n}}\right)=$ e^{x} and that $\exp (x)=e^{x}$ for all $x \in \mathbb{R}$.]
2. The ϵ-neighbourhood of $a \in \mathbb{R}$ is the set

$$
V_{\epsilon}(a)=\{x \in \mathbb{R}:|x-a|<\epsilon\} .
$$

(i) Let $A \subseteq \mathbb{R}$. Define what is meant for A to be an open set, for $x \in \mathbb{R}$ to be a limit point of A, and what it means for A to be a closed set.
(ii) Prove that x is a limit point of A if and only if there is a sequence $\left(a_{n}\right)$ of points $a_{n} \in A \backslash\{x\}$ converging to x.
(iii) Prove that \mathbb{Q} contains every $x \in \mathbb{R}$ as a limit point.
3. Decide whether the following sets are open, closed, or neither. If a set is not open, find a point in the set for which there is no neighborhood contained in the set. If a set is not closed, find a limit point that is not contained in the set.
(i) \mathbb{Q}
(ii) \mathbb{N}
(iii) $\{x \in \mathbb{R}: x>0\}$
(iv) $(0,1]=\{x \in \mathbb{R}: 0<x \leq 1\}$
(v) $\left\{1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{n^{2}}: n \in \mathbb{N}\right\}$.
4. Decide whether the following statements are true or false. Provide counterexamples for those that are false, and supply proofs for those that are true. (\bar{A} denotes the closure of A, i.e., the union of A and its limit points.)
(i) For any set $A \subseteq \mathbb{R}$, the set $\mathbb{R} \backslash \bar{A}$ is open.
(ii) If a set A has an isolated point, it cannot be an open set.
(iii) A set A is closed if and only if $\bar{A}=A$.
(iv) If A is a bounded set, then $s=\sup A$ is a limit point of A.
(v) Every finite set is closed.
(vi) An open set that contains every rational number must necessarily be all of \mathbb{R}.
5. The Fibonacci sequence $\left(f_{n}\right)$ is defined recursively by $f_{n+1}=f_{n}+f_{n-1}$ for $n \geq 1$, with initial values $f_{0}=0, f_{1}=1$. Define the function $F(x)$ by the power series

$$
F(x)=\sum_{n=0}^{\infty} f_{n} x^{n}
$$

(i) By summing the identity

$$
f_{n+1} x^{n+1}=f_{n} x^{n+1}+f_{n-1} x^{n+1}
$$

over $n \geq 1$, prove that

$$
F(x)=\frac{x}{1-x-x^{2}}
$$

(ii) Show that $F(x)$ has the partial fraction expansion

$$
F(x)=\frac{\frac{1}{\sqrt{5}}}{1-\tau x}-\frac{\frac{1}{\sqrt{5}}}{1-(1-\tau) x}
$$

where $\tau=\frac{1+\sqrt{5}}{2}$ is the golden ratio, Write down the radius of convergence of the power series that was used to define $F(x)$.
(iii) Deduce from (ii) that

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\tau^{n}-(1-\tau)^{n}\right)
$$

(iv) Show that f_{n} is the nearest integer to $\frac{1}{\sqrt{5}} \tau^{n}$.

