Mathematical Analysis I

Exercise sheet 6

12 November 2015

References: Abbott 2.7. Bartle \& Sherbert 3.7

1. Define what it means for an infinite series $\sum_{n=1}^{\infty} a_{n}$ to converge. Let $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$. The series $\sum_{n=1}^{\infty} a_{n}$ is said to converge if the sequence $\left(s_{n}\right)$ converges.
(i) Prove that if $\sum_{n=1}^{\infty} a_{n}$ converges then $\left(a_{n}\right) \rightarrow 0 . a_{n}=s_{n}-s_{n-1}$ for $n \geq 2$ and $\lim a_{n}=$ $\lim s_{n}-\lim s_{n-1}=0$.
(ii) Give a counterexample to the converse of (i). The converse to (i) states that if $\left(a_{n}\right) \rightarrow 0$ then $\sum_{n=1}^{\infty} a_{n}$ converges. A counterexample is given by $a_{n}=\frac{1}{n}$ (divergent harmonic series).
(iii) Let $r \in \mathbb{R}$. Prove that the series $\sum_{n=1}^{\infty} r^{n}$ converges if and only if $\left(r^{n}\right) \rightarrow 0$, and write down its limit in this case. By (i) if the series $\sum_{n=1}^{\infty} r^{n}$ converges then $\left(r^{n}\right) \rightarrow 0$. We need to prove the converse holds in this case. Suppose then that $\left(r^{n}\right) \rightarrow 0$, i.e., $|r|<1$. Let $s_{n}=r+r^{+} \ldots+r^{n}$. Then $r s_{n}-s_{n}=r^{n+1}-r$, whence $s_{n}=\frac{r-r^{n+1}}{1-r}$, and so

$$
s_{n}-\frac{r}{1-r}=\frac{r^{n+1}}{1-r}
$$

Hence

$$
\left|s_{n}-\frac{r}{1-r}\right| \leq \frac{|r|^{n+1}}{1-r}
$$

Since $|r|^{n+1} \rightarrow 0$ as $n \rightarrow \infty$ when $|r|<1$, it follows that $\left(s_{n}\right)$ converges to $\frac{r}{1-r}$ as $n \rightarrow \infty$ when $|r|<1$.
2.
(i) Let $\left(a_{n}\right)$ be a sequence of nonnegative reals. Prove that the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if the sequence of its partial sums $\left(a_{1}+\cdots+a_{n}\right)$ is bounded. The sequence of partial sums $\left(s_{n}\right)=\left(a_{1}+\cdots+a_{n}\right)$ is monotone increasing as $a_{n} \geq 0$ for each n.
Suppose $\left(s_{n}\right)$ is bounded. Then the Monotone Convergence Theorem implies that $\left(s_{n}\right)$ converges to the limit $\sup \left\{s_{n}: n \in \mathbb{N}\right\}$.
Conversely, suppose that $\left(s_{n}\right)$ is convergent. Then $\left(s_{n}\right)$ is bounded. (For sufficiently large N the terms of $\left(s_{n}\right)$ with $n \geq N$ lie within 1 of $l=\lim s_{n}$, and the finitely many terms s_{1}, \ldots, s_{N-1} are bounded too.)
(ii) Using the result of (i), prove that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent. Set $a_{n}=\frac{1}{n}$. For $n=2^{k}$ we have

$$
\begin{aligned}
s_{n} & =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n} \\
& \geq 1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+\cdots+\left(\frac{1}{2^{k-1}}+\cdots+\frac{1}{2^{k-1}}\right) \\
& =1+\frac{k}{2}
\end{aligned}
$$

Thus for $2^{k} \leq n<2^{k+1}$ we have $s_{n}>1+\frac{k}{2}$, so that $\left(s_{n}\right)$ is unbounded. By (i) we conclude that $\left(s_{n}\right)$ diverges.
(iii) Deduce from (ii) that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges when $0<p \leq 1$. Take $a_{n}=\frac{1}{n^{p}}$ with $0 \leq p<1$ and $\left(s_{n}\right)$ the sequence of partial sums. Then $a_{n} \geq \frac{1}{n}>0$ from which it follows that $\left(s_{n}\right)$ is unbounded, since the same is true of the partial sums of $\left(\frac{1}{n}\right)$. Therefore $\sum \frac{1}{n^{p}}$ diverges to $+\infty$ when $0 \leq p \leq 1$.
(iv) Prove that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges when $p>1$.

For $n=3$ we have

$$
1+\left(\frac{1}{2^{p}}+\frac{1}{3^{p}}\right)<1+\frac{2}{2^{p}}=1+\frac{1}{2^{p-1}}
$$

For $n=7$,

$$
1+\left(\frac{1}{2^{p}}+\frac{1}{3^{p}}\right)+\left(\frac{1}{4^{p}}+\frac{1}{5^{p}}+\frac{1}{6^{p}}+\frac{1}{7^{p}}\right)<1+\frac{2}{2^{p}}+\frac{4}{4^{p}}=1+\frac{1}{2^{p-1}}+\frac{1}{4^{p-1}}
$$

By induction on k, for $n=2^{k}-1$ we have

$$
1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots+\frac{1}{\left(2^{k}-1\right)^{p}}<1+\frac{1}{2^{p-1}}+\left(\frac{1}{2^{p-1}}\right)^{2}+\cdots+\left(\frac{1}{2^{p-1}}\right)^{k-1}
$$

and the right-hand side of this inequality is (by question 1 (iii)) bounded above by $\frac{1}{1-\frac{1}{2^{p-1}}}$, so the partial sums $\left(s_{n}\right)$ are bounded, with

$$
s_{2^{k}-1} \leq s_{n}<s_{2^{k+1}-1}<\frac{2^{p-1}}{2^{p-1}-1}
$$

for $2^{k}-1 \leq n<2^{k+1}-1$. By part (i), the series $\sum \frac{1}{n^{p}}$ converges to a limit $\leq \frac{2^{p-1}}{2^{p-1}-1}$ when $p>1$.
3. Let $\left(a_{n}\right)$ be a sequence of reals that is monotone decreasing and converges to 0 .
(i) Prove that the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges to a limit between $a_{1}-a_{2}$ and a_{1}.

Note that $a_{n} \geq 0$ since $\left(a_{n}\right) \rightarrow 0$ and $\left(a_{n}\right)$ is decreasing.
Let $s_{n}=a_{1}-a_{2}+\cdots+(-1)^{n+1} a_{n}$ be the nth partial sum of the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$. Then, as $a_{n} \geq a_{n+1}$ for all n,

$$
s_{2 n}=\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\cdots+\left(a_{2 n-1}-a_{2 n}\right)
$$

defines a monotone increasing subsequence $\left(s_{2 n}\right)$ and

$$
s_{2 n+1}=a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)-\cdots-\left(a_{2 n}-a_{2 n+1}\right)
$$

defines a monotone decreasing subsequence $\left(s_{2 n+1}\right)$. Since

$$
a_{1}-a_{2} \leq s_{2 n} \leq s_{2 n}+a_{2 n+1}=s_{2 n+1} \leq a_{1}
$$

both these subsequences are bounded below by $a_{1}-a_{2}$ and above by a_{1} and converge to the same limit l, and $a_{1}-a_{2} \leq l \leq a_{1}$. It follows that $\left(s_{n}\right)$ converges to this common limit l (since the subsequences $\left(s_{2 n}\right)$ and $\left(s_{2 n+1}\right)$ between them contain all the terms of $\left.\left(s_{n}\right)\right)$.
(ii) Deduce from (i) that the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{p}}$ converges for $p>0$. Take $a_{n}=\frac{1}{n^{p}}$ in (i), which defines a monotone decreasing series convergent to 0 precisely when $p>0$: by the Archimedean Property, for any given $\epsilon>0$ there is $N \in \mathbb{N}$ such that $N>\epsilon^{-\frac{1}{p}}$, or $N^{p}>\epsilon^{-1}$. Then $\frac{1}{n^{p}} \leq \frac{1}{N^{p}}<\epsilon$ for $n \geq N$, which shows that $\left(\frac{1}{n^{p}}\right) \rightarrow 0$.
[Note that when $p<0$ the function $x \mapsto x^{p}$ is no longer monotone increasing, so the inequality $N>\epsilon^{-\frac{1}{p}}$ is switched when raising to the power p in this case and the sequence $\left(\frac{1}{n^{p}}\right)$ is no longer monotone decreasing, but increases without bound. When $p=0$ the series $\sum(-1)^{n+1}$ is divergent as its odd partial sums are constantly 1 and its even partial sums constantly 0 . Thus $\sum \frac{(-1)^{n+1}}{n^{p}}$ diverges when $p \leq 0$.]
4. For each of the following series, prove either that it diverges, or that it converges to a limit and in this case determine the limit:
(i) By the ratio test $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$ converges, since $\frac{(n+1) / 2^{n+1}}{n / 2^{n}}=\frac{n+1}{2 n} \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$. The partial sum is given for $r=\frac{1}{2}$ by

$$
s_{n}=r+2 r^{2}+\cdots+n r^{n}
$$

which satisfies

$$
s_{n}-r s_{n}=r+r^{2}+\cdots+r^{n}-n r^{n+1}=\frac{r-r^{n+1}}{1-r}-n r^{n+1},
$$

(see question 1(iii)) and so

$$
s_{n}=\frac{r-(n+1) r^{n+1}+n r^{n+2}}{(1-r)^{2}}
$$

The sequence $\left(s_{n}\right)$ thus converges to $\frac{r}{(1-r)^{2}}$ as $n \rightarrow \infty\left(\right.$ since $\left(r^{n}\right)$ and $\left(n r^{n}\right)$ converge to 0$)$. Taking $r=\frac{1}{2}$ we find that $\sum_{n=1}^{\infty} \frac{n}{2^{n}}=\frac{1 / 2}{1 / 4}=2$.
(ii) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges by comparison with $\sum \frac{1}{n^{2}}\left(0<\frac{1}{n(n+1)}<\frac{1}{n^{2}}\right)$ and

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots=1
$$

(iii) $\sum_{n=1}^{\infty} \frac{1}{n \sqrt[n]{n}}$ diverges by the limit comparison test (Bartle \& Sherbert Theorem 3.7.8) with the harmonic series $\sum \frac{1}{n}$: the sequence ($n^{\frac{1}{n}}$) converges to 1 (Ex. sheet 5, q. 4(ii)) so that $\lim \frac{1 / n \sqrt[n]{n}}{1 / n}=$ 1. (For sufficiently large n we have $\frac{1}{2 n} \leq \frac{1}{n \sqrt[n]{n}}<\frac{1}{n}$ and the divergence of $\sum_{n=1}^{\infty} \frac{1}{n}$ to infinity forces the same to be true of $\sum_{n=1}^{\infty} \frac{1}{n \sqrt[n]{n}}$.)
(iv) As

$$
\frac{2 n+1}{n(n+1)}=\frac{1}{n}+\frac{1}{n+1}
$$

we have

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2 n+1}{n(n+1)}=\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{1}{n}+\frac{1}{n+1}\right)=1+\frac{1}{2}-\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)-\cdots=1,
$$

the terms cancelling in pairs, except for the first term 1 (and the terms convergent to $0: s_{2 n+1}=1$ and $s_{2 n}=1-\frac{1}{n+1}$, so the whole sequence of partial sums does converge, and not oscillate, as e.g. for $\left.\sum(-1)^{n}\right)$. The series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$ is the conditionally convergent alternating harmonic series, with limit $\ln 2$. Conditional convergence means rearranging the series will give different results - so for example one might be tempted to write

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}-\sum_{n=1}^{\infty}(-1)^{n+2} \frac{1}{n+1}=\ln 2-(\ln 2-1)=1 .
$$

but this requires justification of the rearrangment preserving the limiting value of the series (not easy to do).
(v) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}$ converges by the Alternating Series Test (see question 3(i)) to a limit between $-\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2}}$.
5. Let $\left(a_{n}\right)$ be a sequence of strictly positive reals and suppose that $\sum_{n=1}^{\infty} a_{n}$ is convergent. Either prove or give a counterxample to the following statements:
(i) the series $\sum_{n=1}^{\infty} a_{n}^{2}$ converges, If $\sum a_{n}$ is convergent then $\left(a_{n}\right)$ converges to 0 . In particular, $a_{n}<1$ for sufficiently large n. Then $a_{n}^{2}<a_{n}$ for large enough n and by the Comparison Test the series $\sum a_{n}^{2}$ also converges.
(ii) the series $\sum_{n=1}^{\infty} \sqrt{a_{n}}$ converges, Counterexample: take $a_{n}=\frac{1}{n^{2}}$. The series $\sum \frac{1}{n^{2}}$ converges but $\sum \frac{1}{n}$ diverges.
(iv) the series $\sum_{n=1}^{\infty}\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right)$ diverges. We have

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \frac{a_{1}}{n}
$$

so by comparison with the unbounded harmonic series $a_{1} \sum \frac{1}{n}$ the given series diverges.

