
Mathematical Analysis I

Exercise sheet 6

12 November 2015

References: Abbott 2.7. Bartle & Sherbert 3.7

1. Define what it means for an infinite series
∑∞

n=1 an to converge. Let sn = a1 + a2 + · · ·+ an. The
series

∑∞
n=1 an is said to converge if the sequence (sn) converges.

(i) Prove that if
∑∞

n=1 an converges then (an) → 0. an = sn − sn−1 for n ≥ 2 and lim an =
lim sn − lim sn−1 = 0.

(ii) Give a counterexample to the converse of (i). The converse to (i) states that if (an) → 0 then∑∞
n=1 an converges. A counterexample is given by an = 1

n (divergent harmonic series).

(iii) Let r ∈ R. Prove that the series
∑∞

n=1 r
n converges if and only if (rn)→ 0, and write down its

limit in this case. By (i) if the series
∑∞

n=1 r
n converges then (rn) → 0. We need to prove the

converse holds in this case. Suppose then that (rn) → 0, i.e., |r| < 1. Let sn = r + r+ · · ·+ rn.

Then rsn − sn = rn+1 − r, whence sn = r−rn+1

1−r , and so

sn −
r

1− r
=
rn+1

1− r
.

Hence ∣∣∣∣sn − r

1− r

∣∣∣∣ ≤ |r|n+1

1− r
.

Since |r|n+1 → 0 as n→∞ when |r| < 1, it follows that (sn) converges to r
1−r as n→∞ when

|r| < 1.

2.

(i) Let (an) be a sequence of nonnegative reals. Prove that the series
∑∞

n=1 an is convergent if and
only if the sequence of its partial sums (a1 + · · ·+ an) is bounded. The sequence of partial sums
(sn) = (a1 + · · ·+ an) is monotone increasing as an ≥ 0 for each n.

Suppose (sn) is bounded. Then the Monotone Convergence Theorem implies that (sn) converges
to the limit sup{sn : n ∈ N}.
Conversely, suppose that (sn) is convergent. Then (sn) is bounded. (For sufficiently large N the
terms of (sn) with n ≥ N lie within 1 of l = lim sn, and the finitely many terms s1, . . . , sN−1 are
bounded too.)

(ii) Using the result of (i), prove that the harmonic series
∑∞

n=1
1
n is divergent. Set an = 1

n . For
n = 2k we have

sn = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n

≥ 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·+

(
1

2k−1
+ · · ·+ 1

2k−1

)
= 1 +

k

2
.
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Thus for 2k ≤ n < 2k+1 we have sn > 1 + k
2 , so that (sn) is unbounded. By (i) we conclude that

(sn) diverges.

(iii) Deduce from (ii) that
∑∞

n=1
1
np diverges when 0 < p ≤ 1. Take an = 1

np with 0 ≤ p < 1
and (sn) the sequence of partial sums. Then an ≥ 1

n > 0 from which it follows that (sn) is
unbounded, since the same is true of the partial sums of ( 1

n). Therefore
∑ 1

np diverges to +∞
when 0 ≤ p ≤ 1.

(iv) Prove that
∑∞

n=1
1
np converges when p > 1.

For n = 3 we have

1 +

(
1

2p
+

1

3p

)
< 1 +

2

2p
= 1 +

1

2p−1
.

For n = 7,

1 +

(
1

2p
+

1

3p

)
+

(
1

4p
+

1

5p
+

1

6p
+

1

7p

)
< 1 +

2

2p
+

4

4p
= 1 +

1

2p−1
+

1

4p−1
.

By induction on k, for n = 2k − 1 we have

1 +
1

2p
+

1

3p
+ · · ·+ 1

(2k − 1)p
< 1 +

1

2p−1
+

(
1

2p−1

)2

+ · · ·+
(

1

2p−1

)k−1

and the right-hand side of this inequality is (by question 1(iii)) bounded above by 1
1− 1

2p−1
, so

the partial sums (sn) are bounded, with

s2k−1 ≤ sn < s2k+1−1 <
2p−1

2p−1 − 1

for 2k−1 ≤ n < 2k+1−1. By part (i), the series
∑ 1

np converges to a limit ≤ 2p−1

2p−1−1 when p > 1.

3. Let (an) be a sequence of reals that is monotone decreasing and converges to 0.

(i) Prove that the alternating series
∑∞

n=1(−1)n+1an converges to a limit between a1 − a2 and a1.

Note that an ≥ 0 since (an)→ 0 and (an) is decreasing.

Let sn = a1−a2+· · ·+(−1)n+1an be the nth partial sum of the alternating series
∑∞

n=1(−1)n+1an.
Then, as an ≥ an+1 for all n,

s2n = (a1 − a2) + (a3 − a4) + · · ·+ (a2n−1 − a2n)

defines a monotone increasing subsequence (s2n) and

s2n+1 = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2n − a2n+1)

defines a monotone decreasing subsequence (s2n+1). Since

a1 − a2 ≤ s2n ≤ s2n + a2n+1 = s2n+1 ≤ a1
both these subsequences are bounded below by a1 − a2 and above by a1 and converge to the
same limit l, and a1 − a2 ≤ l ≤ a1. It follows that (sn) converges to this common limit l (since
the subsequences (s2n) and (s2n+1) between them contain all the terms of (sn)).

(ii) Deduce from (i) that the alternating series
∑∞

n=1
(−1)n+1

np converges for p > 0. Take an = 1
np

in (i), which defines a monotone decreasing series convergent to 0 precisely when p > 0: by the

Archimedean Property, for any given ε > 0 there is N ∈ N such that N > ε
− 1

p , or Np > ε−1.
Then 1

np ≤ 1
Np < ε for n ≥ N , which shows that ( 1

np )→ 0.

[Note that when p < 0 the function x 7→ xp is no longer monotone increasing, so the inequality

N > ε
− 1

p is switched when raising to the power p in this case and the sequence ( 1
np ) is no

longer monotone decreasing, but increases without bound. When p = 0 the series
∑

(−1)n+1 is
divergent as its odd partial sums are constantly 1 and its even partial sums constantly 0. Thus∑ (−1)n+1

np diverges when p ≤ 0.]
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4. For each of the following series, prove either that it diverges, or that it converges to a limit and
in this case determine the limit:

(i) By the ratio test
∑∞

n=1
n
2n converges, since (n+1)/2n+1

n/2n = n+1
2n →

1
2 as n → ∞. The partial sum

is given for r = 1
2 by

sn = r + 2r2 + · · ·+ nrn

which satisfies

sn − rsn = r + r2 + · · ·+ rn − nrn+1 =
r − rn+1

1− r
− nrn+1,

(see question 1(iii)) and so

sn =
r − (n+ 1)rn+1 + nrn+2

(1− r)2
.

The sequence (sn) thus converges to r
(1−r)2 as n → ∞ (since (rn) and (nrn) converge to 0).

Taking r = 1
2 we find that

∑∞
n=1

n
2n = 1/2

1/4 = 2.

(ii)
∑∞

n=1
1

n(n+1) converges by comparison with
∑ 1

n2 (0 < 1
n(n+1) <

1
n2 ) and

∞∑
n=1

1

n(n+ 1)
=

∞∑
n=1

(
1

n
− 1

n+ 1

)
= 1− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ · · · = 1

(iii)
∑∞

n=1
1

n n√n diverges by the limit comparison test (Bartle & Sherbert Theorem 3.7.8) with the

harmonic series
∑ 1

n : the sequence (n
1
n ) converges to 1 (Ex. sheet 5, q. 4(ii)) so that lim 1/n n√n

1/n =

1. (For sufficiently large n we have 1
2n ≤

1
n n√n < 1

n and the divergence of
∑∞

n=1
1
n to infinity

forces the same to be true of
∑∞

n=1
1

n n√n .)

(iv) As
2n+ 1

n(n+ 1)
=

1

n
+

1

n+ 1

we have

∞∑
n=1

(−1)n+1 2n+ 1

n(n+ 1)
=
∞∑
n=1

(−1)n+1

(
1

n
+

1

n+ 1

)
= 1 +

1

2
− (

1

2
+

1

3
) + (

1

3
+

1

4
)− · · · = 1,

the terms cancelling in pairs, except for the first term 1 (and the terms convergent to 0: s2n+1 = 1
and s2n = 1− 1

n+1 , so the whole sequence of partial sums does converge, and not oscillate, as e.g.

for
∑

(−1)n). The series
∑∞

n=1(−1)n+1 1
n is the conditionally convergent alternating harmonic

series, with limit ln 2. Conditional convergence means rearranging the series will give different
results - so for example one might be tempted to write

∞∑
n=1

(−1)n+1 1

n
−
∞∑
n=1

(−1)n+2 1

n+ 1
= ln 2− (ln 2− 1) = 1.

but this requires justification of the rearrangment preserving the limiting value of the series (not
easy to do).

(v)
∑∞

n=1
(−1)n√
n+1

converges by the Alternating Series Test (see question 3(i)) to a limit between − 1√
2

and 1√
3
− 1√

2
.
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5. Let (an) be a sequence of strictly positive reals and suppose that
∑∞

n=1 an is convergent. Either
prove or give a counterxample to the following statements:

(i) the series
∑∞

n=1 a
2
n converges, If

∑
an is convergent then (an) converges to 0. In particular,

an < 1 for sufficiently large n. Then a2n < an for large enough n and by the Comparison Test
the series

∑
a2n also converges.

(ii) the series
∑∞

n=1

√
an converges, Counterexample: take an = 1

n2 . The series
∑ 1

n2 converges but∑ 1
n diverges.

(iv) the series
∑∞

n=1

(
a1+a2+···+an

n

)
diverges. We have

a1 + a2 + · · ·+ an
n

≥ a1
n

so by comparison with the unbounded harmonic series a1
∑ 1

n the given series diverges.
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