Mathematical Analysis I

Exercise sheet 6

12 November 2015

References: Abbott 2.7. Bartle & Sherbert 3.7

1. Define what it means for an infinite series Z:C | ay, to converge. Let s, = a1 +ag +---+ay. The
series 7 | ay, is said to converge if the sequence (s,,) converges.
(i) Prove that if >~ a, converges then (a,) — 0. a, = S, — $p—1 for n > 2 and lima, =

lims,, —lims,_1 = 0.

(ii) Give a counterexample to the converse of (i). The converse to (i) states that if (a,) — 0 then
1

o0 . . . . .
> 1 @n converges. A counterexample is given by a,, = - (divergent harmonic series).

(iii) Let r € R. Prove that the series Y 7, 7™ converges if and only if () — 0, and write down its

limit in this case. By (i) if the series Y 2 | r™ converges then (r"™) — 0. We need to prove the
converse holds in this case. Suppose then that (r") — 0, i.e., [r| < 1. Let s, =7+ 7T + 77
Then rs,, — s, = r"t! — r, whence s,, = ”_{j:l, and so
r rrtl
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Hence

Sp — ! < |T|n+1.

Tol-r| T 1w
Since |r|"*! — 0 as n — oo when |r| < 1, it follows that (sy) converges to ;= as n — oo when
Ir| < 1.

(i) Let (a,) be a sequence of nonnegative reals. Prove that the series > 7 | a, is convergent if and
only if the sequence of its partial sums (a; + - -+ + a,,) is bounded. The sequence of partial sums
(sn) = (a1 + -+ + ay,) is monotone increasing as a,, > 0 for each n.

Suppose (sy,) is bounded. Then the Monotone Convergence Theorem implies that (s, ) converges
to the limit sup{s, : n € N}.

Conversely, suppose that (s;,) is convergent. Then (s;,) is bounded. (For sufficiently large N the
terms of (s,) with n > N lie within 1 of [ = lim s,,, and the finitely many terms s1,...,sy_1 are
bounded too.)

(ii) Using the result of (i), prove that the harmonic series > o0 | 1

n = 2% we have

is divergent. Set a, = % For
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(iii)

Thus for 28 < n < 25! we have s, > 1+ %, so that (sy) is unbounded. By (i) we conclude that
(sn) diverges.

Deduce from (ii) that > o°, -1 diverges when 0 < p < 1. Take ap = & with 0 < p < 1
and (s,) the sequence of partial sums. Then a, > 1 > 0 from which it follows that (s,) is
unbounded, since the same is true of the partial sums of (%) Therefore > nip diverges to +o0

when 0 < p < 1.

Prove that > °°

For n = 3 we have

converges when p > 1.
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+ —|-3p + —i-@—i-ﬁfp—i-?p < —i-ﬁ—i-f— +2p—1+ﬁ'

By induction on k, for n = 2¥ — 1 we have
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and the right-hand side of this inequality is (by question 1(iii))

, SO

the partial sums (s,) are bounded, with
2r—1

Sok_1 < Sp < Sok+1_1 < ﬁ

for 28 —1 < n < 21 —1. By part (i), the series Z L converges to a limit < 22— — when p > 1.
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3. Let (a,) be a sequence of reals that is monotone decreasing and converges to 0.

(i)

Prove that the alternating series > - , (—1)""a,, converges to a limit between a; — as and ay.
Note that a, > 0 since (a,) — 0 and (a,) is decreasing.
Let s, = aj—ag+- - -+(—1)""a, be the nth partial sum of the alternating series > °°  (—1)""q,,.
Then, as a, > an41 for all n,

son = (a1 — az) + (a3 — a4) + -+ - + (a2n—1 — azn)

defines a monotone increasing subsequence (s2,) and
Son+1 = a1 — (ag — a3) — (a4 — as) — - — (azn — a2n+1)
defines a monotone decreasing subsequence (s2,+1). Since
a1 — a2 < S2p < S2p + A2p41 = S2n4+1 < a1

both these subsequences are bounded below by a; — as and above by a; and converge to the
same limit [, and a1 — ag <1 < a;. It follows that (s,) converges to this common limit [ (since
the subsequences (s2,) and (s2,+1) between them contain all the terms of (s,)).

S . . . N (—1 n+1
Deduce from (i) that the alternating series > 2 { ”),) o~

in (i), which defines a monotone decreasing series convergent to 0 precisely when p > 0: by the

1
Archimedean Property, for any given ¢ > 0 there is N € N such that N > ¢ », or NP > ¢!
Then L < & < € for n > N, which shows that (=) — 0.

converges for p > 0. Take a, =

[Note that When p < 0 the function x — zP is no longer monotone increasing, so the inequality
N > 6_% is switched when raising to the power p in this case and the sequence (n—lp) is no
longer monotone decreasing, but increases without bound. When p = 0 the series >_(—1)"*! is
divergent as its odd partial sums are constantly 1 and its even partial sums constantly 0. Thus
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4. For each of the following series, prove either that it diverges, or that it converges to a limit and

in this case determine the limit:

(i)

(iii)

n+1 .
(+D/27_ ndl o 1ag o0, The partial sum

3 o0 n .
By the ratio test ) | 5 converges, since ~— T = on 5

2n
is given for r = % by

sn=71+2r+- "
which satisfies

2 p_ -
Sp—rSp=r+r°+--+r" "t = et
1—r
(see question 1(iii)) and so
r— (n+1)r"t 4 ppnt?

(1—r)?
The sequence (s,) thus converges to oz as n — o0 (since (r™) and (nr™) converge to 0).

Taking r = 1 we find that 00 | 22 = % = 2.

Sp =

1

n(n+1)

1 /1 1 1 1 1 1 1
—_— = _— :1—— _—— — R — ...:1
Zln(n+1) ;<n n—i—l) 2+2 3+3 4+

> L converges by comparison with 3 7712 (0<

1
n=1 n(n+1) < -7) and

3¢ | —+— diverges by the limit comparison test (Bartle & Sherbert Theorem 3.7.8) with the

n¥/n
harmonic series > 2: the sequence (n%) converges to 1 (Ex. sheet 5, q. 4(ii)) so that lim L a /g/ﬁ =

L_ < % and the divergence of > >, % to infinity

1. (For sufficiently large n we have ﬁ <

n¥/n
forces the same to be true of > 7, n%\/ﬁ)
As
2l 1,1
nn+1) n n+1
we have
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the terms cancelling in pairs, except for the first term 1 (and the terms convergent to 0: s9, 411 = 1
and S, = 1— n%rl, so the whole sequence of partial sums does converge, and not oscillate, as e.g.
for >°(—1)"). The series > o0 ;(—1)"*!1 ig the conditionally convergent alternating harmonic
series, with limit In2. Conditional convergence means rearranging the series will give different

results - so for example one might be tempted to write

o0 o0

1 1
_yntis —1)"? —— =In2— (In2—-1)=1.
;<>n;<>n+1n<n>

but this requires justification of the rearrangment preserving the limiting value of the series (not
easy to do).

>y E/_an)Z converges by the Alternating Series Test (see question 3(i)) to a limit between —%

1 1
and ﬁ—ﬁ




5. Let (an) be a sequence of strictly positive reals and suppose that >

prove or give a counterxample to the following statements:

| Gp, is convergent. Either

(i) the series > 7 a? converges, If Y ay, is convergent then (a,) converges to 0. In particular,
an < 1 for sufficiently large n. Then a? < a, for large enough n and by the Comparison Test
the series Y a2 also converges.

i » geries o0 ~Onverses . _ 1 : 1
(ii) thc,ls(,rlcs > 1 +/an converges, Counterexample: take a, = —5. The series )  — converges but
> o diverges.

3 coTieg S aitaz+---+a eTon
(iv) the series Y 02 | (#Fezt=dan) diverges. We have

a1+a2+---+an>ﬂ
n n

so by comparison with the unbounded harmonic series a; ) % the given series diverges.



