Mathematical Analysis I

Exercise sheet 6

12 November 2015

References: Abbott 2.7. Bartle \& Sherbert 3.7

1. Define what it means for an infinite series $\sum_{n=1}^{\infty} a_{n}$ to converge.
(i) Prove that if $\sum_{n=1}^{\infty} a_{n}$ converges then $\left(a_{n}\right) \rightarrow 0$.
(ii) Give a counterexample to the converse of (i).
(iii) Let $r \in \mathbb{R}$. Prove that the series $\sum_{n=1}^{\infty} r^{n}$ converges if and only if $\left(r^{n}\right) \rightarrow 0$, and write down its limit in this case.
2.

(i) Let $\left(a_{n}\right)$ be a sequence of nonnegative reals. Prove that the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if the sequence of its partial sums $\left(a_{1}+\cdots+a_{n}\right)$ is bounded.
(ii) Using the result of (i), prove that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
(iii) Deduce from (ii) that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges when $0<p \leq 1$.
(iv) Prove that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges when $p>1$. [If you use the Cauchy Condensation Test here you must prove it, so you may wish to argue directly instead.]
3. Let $\left(a_{n}\right)$ be a sequence of reals that is monotone decreasing and converges to 0 .
(i) Prove that the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges to a limit between $a_{1}-a_{2}$ and a_{1}. [Two methods of proving this are (1) to use the Cauchy Criterion for series, or (2) to apply the Monotone Convergence Theorem to the two sequences of partial sums $\left(a_{1}-a_{2}+\cdots-a_{2 n}\right)$ and $\left.\left(a_{1}-a_{2}+\cdots-a_{2 n}+a_{2 n+1}\right).\right]$
(ii) Deduce from (i) that the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{p}}$ converges for $p>0$. [In particular the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges to a limit between $\frac{1}{2}$ and 1 (the limit, as you will later prove, is $\ln 2)$.]
4. For each of the following series, prove either that it diverges, or that it converges to a limit and in this case determine the limit:
(i) $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$
(ii) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
(iii) $\sum_{n=1}^{\infty} \frac{1}{n \sqrt[n]{n}}$
(iv) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2 n+1}{n(n+1)}$
(v) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}$
5. Let $\left(a_{n}\right)$ be a sequence of strictly positive reals and suppose that $\sum_{n=1}^{\infty} a_{n}$ is convergent. Either prove or give a counterxample to the following statements:
(i) the series $\sum_{n=1}^{\infty} a_{n}^{2}$ converges,
(ii) the series $\sum_{n=1}^{\infty} \sqrt{a_{n}}$ converges,
(iv) the series $\sum_{n=1}^{\infty}\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right)$ diverges.
6. Define what is meant by a rearrangement of a series $\sum_{n=1}^{\infty} a_{n}$.
(i) Prove that if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges then so does $\sum_{n=1}^{\infty} a_{n}$.
(ii) Prove further that if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges then any rearrangement of the series $\sum_{n=1}^{\infty} a_{n}$ converges to the same limit.
(iii) Prove that if $\sum_{n=1}^{\infty} a_{n}$ converges but $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges then, for any $l \in \mathbb{R}$, there is some rearrangement of $\sum_{n=1}^{\infty} a_{n}$ that converges to l.
[This result is part of what is known as Riemann's Series Theorem. For simplicity you may assume $a_{n} \neq 0$ for each $n \in \mathbb{N}$ (this does not affect the result in the end, but helps define the construction needed in the proof more smoothly). Define $a_{n}^{+}=\max \left\{0, a_{n}\right\}$ and $a_{n}^{-}=\min \left\{0, a_{n}\right\}$. Since $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges, the series $\sum_{n=1}^{\infty} a_{n}^{+}$diverges to $+\infty$ and the series $\sum_{n=1}^{\infty} a_{n}^{-}$diverges to $-\infty$. Use partial sums of these two series to construct a rearrangement of $\sum_{n=1}^{\infty} a_{n}$ that is convergent to l.]

