Mathematical Analysis I

Exercise sheet 5

Solutions to selected exercises
5 November 2015

References: Abbott 2.5, 2.6. Bartle \& Sherbert 3.3, 3.4, 3.5
2. Show that if a sequence of real numbers $\left(a_{n}\right)$ has either of the following properties then it is divergent:
(i) $\left(a_{n}\right)$ has two subsequences that converge to different limits,
(ii) $\left(a_{n}\right)$ is unbounded.

Is the converse true, that any divergent sequence is either unbounded or has two subsequences that converge to a different limit?

We use the fact that a sequence $\left(a_{n}\right)$ is convergent to a limit l if and only if every subsequence of $\left(a_{n}\right)$ is convergent to the same limit l.

Taking the negation of each side of this equivalence, we have: ${ }^{1}$
A sequence is divergent if and only if for every $l \in \mathbb{R}$ there is some subsequence of $\left(a_{n}\right)$ not convergent to l.

A subsequence $\left(a_{n_{i}}\right)$ of $\left(a_{n}\right)$ can fail to converge to l in two different ways: either $\left(a_{n_{i}}\right)$ has a subsequence that converges to a limit $l^{\prime} \neq l$, or $\left(a_{n_{i}}\right)$ is unbounded. The latter puts us in case (ii). In the former case, when a subsequence of $\left(a_{n}\right)$ is unbounded the whole sequence $\left(a_{n}\right)$ is also unbounded. Else we obtain two subsequences with distinct limits, putting us in case (i).

Proof of former claim, ${ }^{2}$ that if all subsequences of a divergent sequence $\left(a_{n}\right)$ that converge have the same limit l^{\prime} then there must be some unbounded subsequence of $\left(a_{n}\right)$.

If all subsequences of $\left(a_{n}\right)$ were bounded then $\left(a_{n}\right)$ would itself be bounded, in which case a divergent subsequence of $\left(a_{n}\right)$ must contain two subsequences convergent to different limits. To see this, suppose to the contrary that $\left(a_{n}\right)$ is a divergent bounded sequence that does not have two convergent subsequences with different limits. By the Bolzano-Weierstrass Theorem $\left(a_{n}\right)$ has a subsequence convergent to a limit l. Now use the fact that l is not the limit of some subsequence of $\left(a_{n}\right)$ (since $\left(a_{n}\right)$ is divergent by hypothesis) to produce a subsequence of (a_{n}) bounded away from l - i.e., belonging to some bounded interval disjoint from a neighbourhood of l. Applying the Bolzano-Weierstrass Theorem again, we produce a convergent subsequence of $\left(a_{n}\right)$ that has a limit that must be different to l. This contradicts the assumption that any convergent subsequence has the same limit.
4.
(i) Let $c>0$ be a positive real number. Use the Monotone Convergence Theorem to show that the sequence $\left(c^{\frac{1}{n}}\right)$ is convergent and determine its limit. [Consider the cases $0<c<1$ and $c>1$ separately.]

[^0]Write $a_{n}=c^{\frac{1}{n}}$. We will show that $\left(a_{n}\right)$ is monotone and bounded, and so will be able to apply the Monotone Convergence Theorem (MCT).
Consider first $0<c<1$. Then $0<c^{\frac{1}{n}}<1$ for all n (since exponentation to a positive number is an increasing function, preserving inqualities). So (a_{n}) is bounded below by 0 and above by 1 .
Then $c^{\frac{n+1}{n}}=c \cdot c^{\frac{1}{n}}<c$, whence $a_{n+1}=c^{\frac{1}{n+1}}<c^{\frac{1}{n}}=a_{n}$, so $\left(a_{n}\right)$ is strictly increasing.
MCT implies that $\left(a_{n}\right)$ converges to some limit l with $0<l \leq 1$. The subsequence $\left(a_{2 n}\right)=$ $\left(c^{\frac{1}{2 n}}\right)=\left(a_{n}^{\frac{1}{2}}\right)$ must converge to the same limit l. By question $3(\mathrm{i})$ we know that $\left(a_{n}^{\frac{1}{2}}\right) \rightarrow l^{\frac{1}{2}}$. This gives $l=l^{\frac{1}{2}}$, which together with $l>0$ implies $l=1$. Thus $\left(c^{\frac{1}{n}}\right) \rightarrow 1$.
Consider now the sequence $\left(a_{n}\right)=\left(c^{\frac{1}{n}}\right)$ for $c>1$. Here $a_{n}=c^{\frac{1}{n}}>1$, so $\left(a_{n}\right)$ is bounded below. With $c^{\frac{n+1}{n}}=c \cdot c^{\frac{1}{n}}>c$, we have $a_{n}=c^{\frac{1}{n}}>c^{\frac{1}{n+1}}=a_{n+1}$, so $\left(a_{n}\right)$ is strictly decreasing.
$\operatorname{By} \operatorname{MCT}\left(a_{n}\right)$ converges to a limit $l \geq 1$. Since the subsequence $\left(a_{2 n}\right)=\left(a_{n}^{\frac{1}{2}}\right)$ converges to the same limit we must have again $l^{\text {frac } 12}=l$, whence $l=1$.
(ii) Is the sequence $\left(n^{\frac{1}{n}}\right)$ convergent? Either give a proof of divergence or, if it is convergent, determine the limit of the sequence.
Now set $a_{n}=n^{\frac{1}{n}}$. We have $a_{n}>1$ for all $n \geq 1$.
We show that $\left(a_{n}\right)$ is decreasing for $n \geq 3$ by showing that $\frac{a_{n+1}}{a_{n}}<1$ for $n \geq 3$. It is easier to claim the equivalent inequality $\left(\frac{a_{n+1}}{a_{n}}\right)^{n(n+1)}<1$, which is to say $\frac{(n+1)^{n}}{n^{n+1}}<1$, for $n \geq 3$. To prove this claim, rewrite the inequality as

$$
\left(1+\frac{1}{n}\right)^{n}<n
$$

and use the following
Lemma We have $\left(1+\frac{1}{n}\right)^{n}<3$ for all $n \in \mathbb{N}$.
Proof By the binomial expansion,

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n} & =1+\frac{n}{1} \cdot \frac{1}{n}+\frac{n(n-1)}{2!} \cdot \frac{1}{n^{2}}+\frac{n(n-1)(n-2)}{3!} \cdot \frac{1}{n^{3}}+\cdots+\frac{n(n-1) \cdots 2 \cdot 1}{n!} \cdot \frac{1}{n^{n}} \\
& =1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{n-1}{n}\right) \\
& \leq 1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} \\
& \leq 1+1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n-1}} \\
& =1+\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}}=3-\frac{1}{2^{n-1}}
\end{aligned}
$$

where in the penultimate line we used the fact that $2^{n-1} \leq n!$ so that $\frac{1}{n!} \leq \frac{1}{2^{n-1}}$, and in the last line we summed a geometric series.

Using the above Lemma, we have $\left(1+\frac{1}{n}\right)^{n}<3$, whence $\left(1+\frac{1}{n}\right)^{n}<n$ for $n \geq 3$, proving the claim. This yields the desired conclusion that $\left(a_{n}\right)$ is decreasing for $n \geq 3$. Since $\left(a_{n}\right)$ is bounded below by 1 we conclude by MCT that $\left(a_{n}\right)$ converges to a limit $l \geq 1$. By considering the subsequence $\left(a_{2 n}\right)=\left((2 n)^{\frac{1}{2 n}}\right)$, also convergent to l, but also to $\lim \left(\sqrt{2}^{\frac{1}{n}} n^{\frac{1}{2 n}}\right)=\lim \sqrt{2}^{\frac{1}{n}} \lim n^{\frac{1}{2 n}}$ by the algebra of limits applied to the convergent sequences $\left(\sqrt{2^{\frac{1}{n}}}\right)$ and $\left(n^{\frac{1}{2 n}}\right)$, we have $l=1 \cdot l^{\frac{1}{2}}$, using part (i) of this question with $c=\sqrt{2}$ and question $3(\mathrm{i})$. Thus $l=l^{\frac{1}{2}}$ and along with $l \geq 1$ this forces $l=1$.

Hence $\lim n^{\frac{1}{n}}=1$.
(i) Prove that a sequence of reals $\left(a_{n}\right)$ has a monotone subsequence. Deduce that a bounded sequence of reals has a convergent subsequence (Bolzano-Weierstrass Theorem).
Define a term a_{m} of $\left(a_{n}\right)$ to be a peak if $\forall n \geq m \quad a_{m} \geq a_{n}\left(a_{m}\right.$ is higher than any later term).
There are two case to consider.
(1) There are infinitely many peaks. Here we have a subsequence $\left(a_{m_{i}}\right)$ consisting of peaks, which must be monotone decreasing since by definition of a peak $a_{m_{i}} \geq a_{n}$ for all $n \geq m_{i}$, in particular for $n=m_{i+1}$.
(2) There are finitely many peaks. Let the peaks be $a_{m_{1}}, \ldots, a_{m_{k}}$. Set $n_{1}=m_{k}+1$. Since $a_{n_{1}}$ is not a peak there is some $n_{2}>n_{1}$ such that $a_{n_{1}}<a_{n_{2}}$. Since $a_{n_{2}}$ is not a peak, there is $n_{3}>n_{2}$ such that $a_{n_{2}}<a_{n_{3}}$. Continuing in this way we obtain a subsequence $\left(a_{n_{i}}\right)$ that is monotone increasing.

Now suppose that $\left(a_{n}\right)$ is a bounded sequence.. Then by the previous $\left(a_{n}\right)$ has a monotone subsequence, which must also be bounded. By MCT this subsequence converges to a limit.
(ii) Prove as a corollary of (i) that if a bounded sequence of reals $\left(a_{n}\right)$ has the property that every subsequence that is convergent has the same limit l, then the whole sequence is itself convergent to l.

Let $\left(a_{n}\right)$ be a bounded sequence with the property that any subsequence that converges has the same limit l. (Note that it is not asssumed that every subsequence converges.)
Suppose to the contrary that $\left(a_{n}\right)$ does not converge to l. Then $\exists \epsilon>0 \forall N \exists n \geq N \quad\left|a_{n}-l\right| \geq \epsilon$. We can thus for some $\epsilon>0$ form a subsequence $\left(a_{n_{i}}\right)$ such that $\left|a_{n_{i}}-l\right| \geq \epsilon$ for all i. The subsequence $\left(a_{n_{i}}\right)$ is bounded since $\left(a_{n}\right)$ is. By (i) (Bolzano-Weierstrass Theorem) ($a_{n_{i}}$) has a convergent subsequence, which is also then a subsequence of $\left(a_{n}\right)$. By hypothesis this subsequence of $\left(a_{n_{i}}\right)$ converges to l, contradicting the fact that $\left|a_{n_{i}}-l\right| \geq \epsilon$ for all i. Hence our assumption that $\left(a_{n}\right)$ does not converge to l was false, and so $\left(a_{n}\right) \rightarrow l$.
(iii) Give an example to show that the condition in (ii) that $\left(a_{n}\right)$ is bounded is necessary.

Any example of an unbounded sequence interleaved with a convergent sequence, e.g. $1,0,2,0,3,0,4,0,5, \ldots$.
6. Define what it means for a sequence of reals $\left(a_{n}\right)$ to be a Cauchy sequence.

The sequence $\left(a_{n}\right)$ is a Cauchy sequence if $\forall \epsilon>0 \exists N \in \mathbb{N} \forall m, n \geq N \quad\left|a_{m}-a_{n}\right|<\epsilon$.
(i) Suppose $\left(a_{n}\right)$ is a sequence with the property that for all $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|a_{n+1}-a_{n}\right|<\epsilon$. Is $\left(a_{n}\right)$ necessarily a Cauchy sequence? (Give a counterexample if not, a proof if so.)
Take $a_{n}=\sqrt{n}$. Then $a_{n+1}-a_{n}=\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}} \rightarrow 0$ as $n \rightarrow \infty$ but for example $a_{2 n}-a_{n}=\sqrt{2 n}-\sqrt{n}=(\sqrt{2}-1) \sqrt{n} \rightarrow \infty$ as $n \rightarrow \infty$, so $\left(a_{n}\right)$ is not a Cauchy sequence.
(ii) A sequence $\left(a_{n}\right)$ is contractive if there is a constant C with $0<C<1$ such that

$$
\left|a_{n+2}-a_{n+1}\right| \leq C\left|a_{n+1}-a_{n}\right|
$$

for all $n \in \mathbb{N}$. Prove that a contractive sequence is a Cauchy sequence.
Repeatedly applying the contractive inequality, we have

$$
\left|a_{n+2}-a_{n+1}\right| \leq C\left|a_{n+1}-a_{n}\right| \leq C^{2}\left|a_{n}-a_{n-1}\right| \leq \cdots \leq C^{n}\left|a_{2}-a_{1}\right|
$$

For $m>n$, by the triangle inequality we have

$$
\begin{aligned}
\left|a_{m}-a_{n}\right| & \leq\left|a_{m}-a_{m-1}\right|+\left|a_{m-1}-a_{m-2}\right|+\cdots+\left|a_{n+1}-a_{n}\right| \\
& \leq\left(C^{m-2}+C^{m-3}+\cdots+C^{n-1}\right)\left|a_{2}-a_{1}\right| \\
& =C^{n-1} \frac{1-C^{m-n}}{1-C}\left|a_{2}-a_{1}\right| \\
& <C^{n-1} \frac{1}{1-C}\left|a_{2}-a_{1}\right| \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

since $0<C<1$ so that $\left(C^{n}\right) \rightarrow 0$. Hence by taking $m>n$ sufficiently large the difference $\left|a_{m}-a_{n}\right|$ can be made arbitrarily small, i.e., $\left(a_{n}\right)$ is a Cauchy sequence.
(iii) Show that the sequence $\left(a_{n}\right)$ defined recursively by $a_{n+1}=\left(2+a_{n}\right)^{-1}$ is contractive when $a_{1}>0$ and determine its limit.
Set $a_{n+1}=\frac{1}{2+a_{n}}$. If $a_{1}>0$ then $a_{n}>0$ for each n (by induction). We have

$$
\left|a_{n+2}-a_{n+1}\right|=\left|\frac{1}{2+a_{n+1}}-\frac{1}{2+a_{n}}\right|=\frac{\left|a_{n+1}-a_{n}\right|}{\left(2+a_{n}\right)\left(2+a_{n+1}\right)}
$$

and since $2+a_{n}>2$ and $2+a_{n+1}>2$ we have $\left|a_{n+2}-a_{n+1}\right|<\frac{1}{4}\left|a_{n+1}-a_{n}\right|$, so that $\left(a_{n}\right)$ is contractive with constant $C=\frac{1}{4}$.
Thus we know $\left(a_{n}\right)$ is convergent to a limit l, since it is a Caucht sequence. By the algebra of limits applied to the equation $a_{n+1}=\frac{1}{2+a_{n}}$ we obtain $l=\frac{1}{2+l}$, when $l^{2}+2 l-1=0$. This quadratic has roots $-1 \pm \sqrt{2}$. Since $a_{n}>0$ we have $l \geq 0$, and thus $l=\sqrt{2}-1$.

[^0]: ${ }^{1}$ In terms of logic we are using the fact that $P \Leftrightarrow Q$ is logically equivalent to $\neg P \Leftrightarrow \neg Q$. Here Q is the statement "there exists l such that for every subsequence of $\left(a_{n}\right)$ we have $\left(a_{n}\right) \rightarrow l$." The negation is "for every l there is some subsequence of $\left(a_{n}\right)$ which does not converge to $l . "$
 ${ }^{2}$ An alternative proof is to use question 5 (ii) to deduce directly that the whole sequence $\left(a_{n}\right)$ is convergent to limit l^{\prime}, contrary to hypothesis.

