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2. Show that if a sequence of real numbers (an) has either of the following properties then it is
divergent:

(i) (an) has two subsequences that converge to different limits,

(ii) (an) is unbounded.

Is the converse true, that any divergent sequence is either unbounded or has two subsequences that
converge to a different limit?

We use the fact that a sequence (an) is convergent to a limit l if and only if every subsequence of
(an) is convergent to the same limit l.

Taking the negation of each side of this equivalence, we have:1

A sequence is divergent if and only if for every l ∈ R there is some subsequence of (an) not
convergent to l.

A subsequence (ani) of (an) can fail to converge to l in two different ways: either (ani) has a
subsequence that converges to a limit l′ 6= l, or (ani) is unbounded. The latter puts us in case (ii). In
the former case, when a subsequence of (an) is unbounded the whole sequence (an) is also unbounded.
Else we obtain two subsequences with distinct limits, putting us in case (i).

Proof of former claim,2 that if all subsequences of a divergent sequence (an) that converge have
the same limit l′ then there must be some unbounded subsequence of (an).

If all subsequences of (an) were bounded then (an) would itself be bounded, in which case a
divergent subsequence of (an) must contain two subsequences convergent to different limits. To see this,
suppose to the contrary that (an) is a divergent bounded sequence that does not have two convergent
subsequences with different limits. By the Bolzano-Weierstrass Theorem (an) has a subsequence
convergent to a limit l. Now use the fact that l is not the limit of some subsequence of (an) (since (an)
is divergent by hypothesis) to produce a subsequence of (an) bounded away from l – i.e., belonging to
some bounded interval disjoint from a neighbourhood of l. Applying the Bolzano-Weierstrass Theorem
again, we produce a convergent subsequence of (an) that has a limit that must be different to l. This
contradicts the assumption that any convergent subsequence has the same limit.

4.

(i) Let c > 0 be a positive real number. Use the Monotone Convergence Theorem to show that the

sequence (c
1
n ) is convergent and determine its limit. [Consider the cases 0 < c < 1 and c > 1

separately.]

1In terms of logic we are using the fact that P ⇔ Q is logically equivalent to ¬P ⇔ ¬Q. Here Q is the statement
“there exists l such that for every subsequence of (an) we have (an) → l.” The negation is “for every l there is some
subsequence of (an) which does not converge to l.”

2An alternative proof is to use question 5(ii) to deduce directly that the whole sequence (an) is convergent to limit
l′, contrary to hypothesis.
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Write an = c
1
n . We will show that (an) is monotone and bounded, and so will be able to apply

the Monotone Convergence Theorem (MCT).

Consider first 0 < c < 1. Then 0 < c
1
n < 1 for all n (since exponentation to a positive number is

an increasing function, preserving inqualities). So (an) is bounded below by 0 and above by 1.

Then c
n+1
n = c · c

1
n < c, whence an+1 = c

1
n+1 < c

1
n = an, so (an) is strictly increasing.

MCT implies that (an) converges to some limit l with 0 < l ≤ 1. The subsequence (a2n) =

(c
1
2n ) = (a

1
2
n ) must converge to the same limit l. By question 3(i) we know that (a

1
2
n )→ l

1
2 . This

gives l = l
1
2 , which together with l > 0 implies l = 1. Thus (c

1
n )→ 1.

Consider now the sequence (an) = (c
1
n ) for c > 1. Here an = c

1
n > 1, so (an) is bounded below.

With c
n+1
n = c · c

1
n > c, we have an = c

1
n > c

1
n+1 = an+1, so (an) is strictly decreasing.

By MCT (an) converges to a limit l ≥ 1. Since the subsequence (a2n) = (a
1
2
n ) converges to the

same limit we must have again lfrac12 = l, whence l = 1.

(ii) Is the sequence (n
1
n ) convergent? Either give a proof of divergence or, if it is convergent,

determine the limit of the sequence.

Now set an = n
1
n . We have an > 1 for all n ≥ 1.

We show that (an) is decreasing for n ≥ 3 by showing that an+1

an
< 1 for n ≥ 3. It is easier to

claim the equivalent inequality
(
an+1

an

)n(n+1)
< 1, which is to say (n+1)n

nn+1 < 1, for n ≥ 3. To prove this

claim, rewrite the inequality as (
1 +

1

n

)n

< n

and use the following

Lemma We have
(
1 + 1

n

)n
< 3 for all n ∈ N.

Proof By the binomial expansion,(
1 +

1

n

)n

= 1 +
n

1
· 1

n
+
n(n− 1)

2!
· 1

n2
+
n(n− 1)(n− 2)

3!
· 1

n3
+ · · ·+ n(n− 1) · · · 2 · 1

n!
· 1

nn

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− n− 1

n

)
≤ 1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

n!

≤ 1 + 1 +
1

2
+

1

4
+ · · ·+ 1

2n−1

= 1 +
1− (12)n

1− 1
2

= 3− 1

2n−1

where in the penultimate line we used the fact that 2n−1 ≤ n! so that 1
n! ≤

1
2n−1 , and in the last line

we summed a geometric series. �

Using the above Lemma, we have (1 + 1
n)n < 3, whence (1 + 1

n)n < n for n ≥ 3, proving the
claim. This yields the desired conclusion that (an) is decreasing for n ≥ 3. Since (an) is bounded
below by 1 we conclude by MCT that (an) converges to a limit l ≥ 1. By considering the subsequence

(a2n) = ((2n)
1
2n ), also convergent to l, but also to lim(

√
2

1
nn

1
2n ) = lim

√
2

1
n limn

1
2n by the algebra of

limits applied to the convergent sequences (
√

2
1
n ) and (n

1
2n ), we have l = 1 · l

1
2 , using part (i) of this

question with c =
√

2 and question 3(i). Thus l = l
1
2 and along with l ≥ 1 this forces l = 1.

Hence limn
1
n = 1.
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5.

(i) Prove that a sequence of reals (an) has a monotone subsequence. Deduce that a bounded
sequence of reals has a convergent subsequence (Bolzano–Weierstrass Theorem).

Define a term am of (an) to be a peak if ∀n ≥ m am ≥ an (am is higher than any later term).

There are two case to consider.

(1) There are infinitely many peaks. Here we have a subsequence (ami) consisting of peaks,
which must be monotone decreasing since by definition of a peak ami ≥ an for all n ≥ mi,
in particular for n = mi+1.

(2) There are finitely many peaks. Let the peaks be am1 , . . . , amk
. Set n1 = mk + 1. Since an1

is not a peak there is some n2 > n1 such that an1 < an2 . Since an2 is not a peak, there is
n3 > n2 such that an2 < an3 . Continuing in this way we obtain a subsequence (ani) that is
monotone increasing.

Now suppose that (an) is a bounded sequence.. Then by the previous (an) has a monotone
subsequence, which must also be bounded. By MCT this subsequence converges to a limit.

(ii) Prove as a corollary of (i) that if a bounded sequence of reals (an) has the property that every
subsequence that is convergent has the same limit l, then the whole sequence is itself convergent
to l.

Let (an) be a bounded sequence with the property that any subsequence that converges has the
same limit l. (Note that it is not asssumed that every subsequence converges.)

Suppose to the contrary that (an) does not converge to l. Then ∃ε > 0∀N ∃n ≥ N |an− l| ≥ ε.
We can thus for some ε > 0 form a subsequence (ani) such that |ani − l| ≥ ε for all i. The
subsequence (ani) is bounded since (an) is. By (i) (Bolzano–Weierstrass Theorem) (ani) has a
convergent subsequence, which is also then a subsequence of (an). By hypothesis this subsequence
of (ani) converges to l, contradicting the fact that |ani − l| ≥ ε for all i. Hence our assumption
that (an) does not converge to l was false, and so (an)→ l.

(iii) Give an example to show that the condition in (ii) that (an) is bounded is necessary.

Any example of an unbounded sequence interleaved with a convergent sequence, e.g. 1, 0, 2, 0, 3, 0, 4, 0, 5, . . . .

6. Define what it means for a sequence of reals (an) to be a Cauchy sequence.
The sequence (an) is a Cauchy sequence if ∀ε > 0 ∃N ∈ N ∀m,n ≥ N |am − an| < ε.

(i) Suppose (an) is a sequence with the property that for all ε > 0 there exists N ∈ N such that
|an+1 − an| < ε. Is (an) necessarily a Cauchy sequence? (Give a counterexample if not, a proof
if so.)

Take an =
√
n. Then an+1 − an =

√
n+ 1 −

√
n = 1√

n+1+
√
n
→ 0 as n → ∞ but for example

a2n − an =
√

2n−
√
n = (

√
2− 1)

√
n→∞ as n→∞, so (an) is not a Cauchy sequence.

(ii) A sequence (an) is contractive if there is a constant C with 0 < C < 1 such that

|an+2 − an+1| ≤ C|an+1 − an|

for all n ∈ N. Prove that a contractive sequence is a Cauchy sequence.

Repeatedly applying the contractive inequality, we have

|an+2 − an+1| ≤ C|an+1 − an| ≤ C2|an − an−1| ≤ · · · ≤ Cn|a2 − a1|.
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For m > n, by the triangle inequality we have

|am − an| ≤ |am − am−1|+ |am−1 − am−2|+ · · ·+ |an+1 − an|
≤ (Cm−2 + Cm−3 + · · ·+ Cn−1)|a2 − a1|

= Cn−1 1− Cm−n

1− C
|a2 − a1|

< Cn−1 1

1− C
|a2 − a1|

→ 0 as n→∞,

since 0 < C < 1 so that (Cn) → 0. Hence by taking m > n sufficiently large the difference
|am − an| can be made arbitrarily small, i.e., (an) is a Cauchy sequence.

(iii) Show that the sequence (an) defined recursively by an+1 = (2+an)−1 is contractive when a1 > 0
and determine its limit.

Set an+1 = 1
2+an

. If a1 > 0 then an > 0 for each n (by induction). We have

|an+2 − an+1| =
∣∣∣∣ 1

2 + an+1
− 1

2 + an

∣∣∣∣ =
|an+1 − an|

(2 + an)(2 + an+1)
,

and since 2 + an > 2 and 2 + an+1 > 2 we have |an+2 − an+1| < 1
4 |an+1 − an|, so that (an) is

contractive with constant C = 1
4 .

Thus we know (an) is convergent to a limit l, since it is a Caucht sequence. By the algebra
of limits applied to the equation an+1 = 1

2+an
we obtain l = 1

2+l , when l2 + 2l − 1 = 0. This

quadratic has roots −1±
√

2. Since an > 0 we have l ≥ 0, and thus l =
√

2− 1.
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