Mathematical Analysis I

Exercise sheet 4

Solutions to selected exercises
29 October 2015

References: Abbott, 2.2, 2.3. Bartle \& Sherbert 3.1, 3.2

5. (Cesàro Mean)

(i) Show that if $\left(a_{n}\right)$ is a convergent sequence, then the sequence $\left(b_{n}\right)$ given by the averages

$$
b_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}
$$

also converges to the same limit.
Suppose that $\left(a_{n}\right) \rightarrow l$. Then

$$
b_{n}-l=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}-l=\frac{\left(a_{1}-l\right)+\left(a_{2}-l\right)+\cdots+\left(a_{n}-l\right)}{n}
$$

and so, by definition of convergence of $\left(a_{n}\right)$ to l and the Triangle Inequality, for every $\epsilon>0$ there is $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|b_{n}-l\right| \leq \frac{\left|a_{1}-l\right|+\cdots+\left|a_{N}-l\right|+(n-N) \epsilon}{n}=\epsilon+\frac{\left|a_{1}-l\right|+\cdots+\left|a_{N}-l\right|-N \epsilon}{n} \tag{1}
\end{equation*}
$$

for all $n \geq N$. For any given $\epsilon>0, N \in \mathbb{N}$ we can choose $N^{\prime} \in \mathbb{N}$ such that

$$
\left|\frac{\left|a_{1}-l\right|+\cdots+\left|a_{N}-l\right|-N \epsilon}{n}\right|<\epsilon
$$

and then

$$
\epsilon+\frac{\left|a_{1}-l\right|+\cdots+\left|a_{N}-l\right|-N \epsilon}{n}<2 \epsilon
$$

and from inequality (1) this proves that $\left(b_{n}\right) \rightarrow l$.
(ii) Give an example to show that it is possible for the sequence $\left(b_{n}\right)$ of averages to converge even if $\left(a_{n}\right)$ does not.
One example is $a_{n}=(-1)^{n}$, which is a divergent (oscillating) sequence. Here

$$
a_{1}+a_{2}+\cdots+a_{n}=\left\{\begin{array}{ll}
-1 & n \text { even } \\
0 & n \text { odd }
\end{array}=\frac{-1-(-1)^{n}}{2}\right.
$$

and the sequence $\left(b_{n}\right)$ with $b_{n}=\frac{-1-(-1)^{n}}{2 n}$ converges to 0 .
6. Define what it means for a sequence to be bounded and for a sequence to be monotone.

A sequence $\left(a_{n}\right)$ is bounded if there is $B \in \mathbb{R}$ such that $a_{n} \in[-B, B]$ for all $n \in \mathbb{N}$.
A sequence (a_{n}) is monotone increasing if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$ and monotone decreasing if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}$. A sequence $\left(a_{n}\right)$ is monotone if it is either monotone increasing or monotone decreasing.
(i) Prove that a convergent sequence is bounded. If $\left(a_{n}\right) \rightarrow l$ then for every $\epsilon>0$ there is $N \in \mathbb{N}$ such that $\left|a_{n}-l\right|<\epsilon$ for all $n \geq N$. By the Triangle Inequality,

$$
\left|a_{n}\right| \leq\left|a_{n}-l\right|+|l|<\epsilon+|l|
$$

for all $n \geq N$, whence

$$
\left|a_{n}\right| \leq \max \left\{\left|a_{1}\right|, \ldots,\left|a_{N-1}\right|,|l|+\epsilon\right\}
$$

for all $n \in \mathbb{N}$. This shows $\left(a_{n}\right)$ is bounded.
(ii) Give an example of a bounded sequence that is not convergent. [This gives a counterexample to the converse of (i).]
$a_{n}=(-1)^{n}$ defines a bounded sequence $\left(a_{n}\right)$ that diverges.
(iii) Use the fact that a bounded set of reals has a supremum to prove that any bounded monotone sequence converges to a limit. [This is the Monotone Convergence Theorem for sequences.]
We prove the statement for a bounded monotone increasing sequence $\left(a_{n}\right)$. The case where $\left(a_{n}\right)$ is decreasing is similar or may be deduced from the increasing sequence $\left(-a_{n}\right)$.
Suppose then the $\left(a_{n}\right)$ is increasing and bounded above by B. By the Axiom of Completeness for \mathbb{R} the supremum $a^{*}=\sup \left\{a_{n}: n \in \mathbb{N}\right\}$ exists and $a^{*} \leq B$.
By the definition of the supremum as the least upper bound, for any $\epsilon>0$ the number $a^{*}-\epsilon$ is not an upper bound for $\left\{a_{n}: n \in \mathbb{N}\right\}$. Hence there is $N \in \mathbb{N}$ such that $a^{*}-\epsilon<a_{N} \leq a^{*}$. Since $\left(a_{n}\right)$ is increasing, it then follows that $a^{*}-\epsilon<a_{n} \leq a^{*}$ for all $n \geq N$. This proves that (a_{n}) converges and $\lim a_{n}=a^{*}$.
(iv) Show that the sequence $\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \ldots$ defined recursively by $a_{n+1}=\sqrt{2+a_{n}}$ is bounded above by 2 and that it is increasing. Deduce from (iii) that $\left(a_{n}\right)$ is convergent and find its limit.
The sequence $\left(a_{n}\right)$ is defined recursively by $a_{n+1}=\sqrt{2+a_{n}}$, where $a_{1}=\sqrt{2}$.
By induction $a_{n}<2$ for all n (base case $a_{1}=\sqrt{2}<2$, induction step $a_{n+1}=\sqrt{2+a_{n}}<$ $\sqrt{2+2}=2$). Also $a_{n}>0$ for all $n \in \mathbb{N}$.
Since

$$
a_{n+1}^{2}-a_{n}^{2}=2+a_{n}-a_{n}^{2}=\left(2-a_{n}\right)\left(a_{n}+1\right)
$$

and both $a_{n}+1>0$ and $2-a_{n}>0$ we have $a_{n+1}^{2}>a_{n}^{2}$, whence $a_{n+1}>a_{n}$. Thus $\left(a_{n}\right)$ is increasing.
By the Monotone Convergence Theorem (iii) the bounded monotone sequence $\left(a_{n}\right)$ converges to a limit l.
By the algebra of limits applied to the equality $a_{n}^{2}=2+a_{n}$ we have $l^{2}=2+l$, whence $(l-2)(l+1)=0$. Since $a_{n}>-1$ and $\left(a_{n}\right)$ is increasing it follows that $l=2$.
[Remark: an explicit - rather than recursive - formula for this sequence is $a_{n}=2 \cos \frac{\pi}{2^{n+1}}$. If you can recall the double angle formula for the cosine function you might see it. It becomes intuitively clear that $a_{n} \rightarrow 2$ since $\cos 0=1$ and $\theta_{n}=\pi / 2^{n+1} \rightarrow 0$ - later you will prove this intuition correct, specifically because the cosine is a continuous function so that $\lim \left(\cos \theta_{n}\right)=\cos \left(\lim \theta_{n}\right)$ for a convergent sequence $\left(\theta_{n}\right)$.]

