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5. (Cesàro Mean)

(i) Show that if (an) is a convergent sequence, then the sequence (bn) given by the averages

bn =
a1 + a2 + · · ·+ an

n

also converges to the same limit.

Suppose that (an)→ l. Then

bn − l =
a1 + a2 + · · ·+ an

n
− l =

(a1 − l) + (a2 − l) + · · ·+ (an − l)
n

and so, by definition of convergence of (an) to l and the Triangle Inequality, for every ε > 0 there
is N ∈ N such that

|bn − l| ≤
|a1 − l|+ · · ·+ |aN − l|+ (n−N)ε

n
= ε+

|a1 − l|+ · · ·+ |aN − l| −Nε
n

(1)

for all n ≥ N . For any given ε > 0, N ∈ N we can choose N ′ ∈ N such that∣∣∣∣ |a1 − l|+ · · ·+ |aN − l| −Nεn

∣∣∣∣ < ε

and then

ε+
|a1 − l|+ · · ·+ |aN − l| −Nε

n
< 2ε

and from inequality (1) this proves that (bn)→ l.

(ii) Give an example to show that it is possible for the sequence (bn) of averages to converge even if
(an) does not.

One example is an = (−1)n, which is a divergent (oscillating) sequence. Here

a1 + a2 + · · ·+ an =

{
−1 n even

0 n odd
=
−1− (−1)n

2

and the sequence (bn) with bn = −1−(−1)n
2n converges to 0.
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6. Define what it means for a sequence to be bounded and for a sequence to be monotone.
A sequence (an) is bounded if there is B ∈ R such that an ∈ [−B,B] for all n ∈ N.
A sequence (an) is monotone increasing if an ≤ an+1 for all n ∈ N and monotone decreasing if

an ≥ an+1 for all n ∈ N. A sequence (an) is monotone if it is either monotone increasing or monotone
decreasing.

(i) Prove that a convergent sequence is bounded. If (an) → l then for every ε > 0 there is N ∈ N
such that |an − l| < ε for all n ≥ N . By the Triangle Inequality,

|an| ≤ |an − l|+ |l| < ε+ |l|

for all n ≥ N , whence
|an| ≤ max{|a1|, . . . , |aN−1|, |l|+ ε}

for all n ∈ N. This shows (an) is bounded.

(ii) Give an example of a bounded sequence that is not convergent. [This gives a counterexample to
the converse of (i).]

an = (−1)n defines a bounded sequence (an) that diverges.

(iii) Use the fact that a bounded set of reals has a supremum to prove that any bounded monotone
sequence converges to a limit. [This is the Monotone Convergence Theorem for sequences.]

We prove the statement for a bounded monotone increasing sequence (an). The case where (an)
is decreasing is similar or may be deduced from the increasing sequence (−an).

Suppose then the (an) is increasing and bounded above by B. By the Axiom of Completeness
for R the supremum a∗ = sup{an : n ∈ N} exists and a∗ ≤ B.

By the definition of the supremum as the least upper bound, for any ε > 0 the number a∗ − ε is
not an upper bound for {an : n ∈ N}. Hence there is N ∈ N such that a∗ − ε < aN ≤ a∗. Since
(an) is increasing, it then follows that a∗ − ε < an ≤ a∗ for all n ≥ N . This proves that (an)
converges and lim an = a∗.

(iv) Show that the sequence
√

2,
√

2 +
√

2,

√
2 +

√
2 +
√

2, . . . defined recursively by an+1 =
√

2 + an
is bounded above by 2 and that it is increasing. Deduce from (iii) that (an) is convergent and
find its limit.

The sequence (an) is defined recursively by an+1 =
√

2 + an, where a1 =
√

2.

By induction an < 2 for all n (base case a1 =
√

2 < 2, induction step an+1 =
√

2 + an <√
2 + 2 = 2). Also an > 0 for all n ∈ N.

Since
a2n+1 − a2n = 2 + an − a2n = (2− an)(an + 1)

and both an + 1 > 0 and 2 − an > 0 we have a2n+1 > a2n, whence an+1 > an. Thus (an) is
increasing.

By the Monotone Convergence Theorem (iii) the bounded monotone sequence (an) converges to
a limit l.

By the algebra of limits applied to the equality a2n = 2 + an we have l2 = 2 + l, whence
(l − 2)(l + 1) = 0. Since an > −1 and (an) is increasing it follows that l = 2.

[Remark: an explicit – rather than recursive – formula for this sequence is an = 2 cos π
2n+1 . If you

can recall the double angle formula for the cosine function you might see it. It becomes intuitively
clear that an → 2 since cos 0 = 1 and θn = π/2n+1 → 0 – later you will prove this intuition
correct, specifically because the cosine is a continuous function so that lim(cos θn) = cos(lim θn)
for a convergent sequence (θn).]

2


