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(Cesaro Mean)

(i) Show that if (ay) is a convergent sequence, then the sequence (b,,) given by the averages
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Suppose that (a,) — . Then
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and so, by definition of convergence of (a,,) to [ and the Triangle Inequality, for every e > 0 there
is N € N such that
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for all n > N. For any given € > 0, N € N we can choose N’ € N such that
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and then
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and from inequality (1) this proves that (b,) — [.

Give an example to show that it is possible for the sequence (b,) of averages to converge even if
(ay) does not.

One example is a, = (—1)", which is a divergent (oscillating) sequence. Here
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and the sequence (b,) with b, = # converges to 0.



6. Define what it means for a sequence to be bounded and for a sequence to be monotone.

A sequence (a,) is bounded if there is B € R such that a,, € [-B, B] for all n € N.

A sequence (a,) is monotone increasing if a, < a,41 for all n € N and monotone decreasing if
apn > an+1 for all n € N. A sequence (a,,) is monotone if it is either monotone increasing or monotone
decreasing.

(i) Prove that a convergent sequence is bounded. If (a,) — [ then for every ¢ > 0 there is N € N
such that |a, — | < e for all n > N. By the Triangle Inequality,

Janl < lan — 1]+ 1] < e+ ]I

for all n > N, whence
lan| < max{|a1],...,|an—1],|l| + €}

for all n € N. This shows (ay,) is bounded.

(ii) Give an example of a bounded sequence that is not convergent. [This gives a counterezample to
the converse of (i).]

an = (—1)" defines a bounded sequence (a,) that diverges.

(iii) Use the fact that a bounded set of reals has a supremum to prove that any bounded monotone
sequence converges to a limit. [This is the Monotone Convergence Theorem for sequences.]

We prove the statement for a bounded monotone increasing sequence (a,). The case where (ay,)
is decreasing is similar or may be deduced from the increasing sequence (—ay,).

Suppose then the (a,) is increasing and bounded above by B. By the Axiom of Completeness
for R the supremum a* = sup{a, : n € N} exists and a* < B.

By the definition of the supremum as the least upper bound, for any € > 0 the number a* — € is
not an upper bound for {a, : n € N}. Hence there is N € N such that a* — € < ay < a*. Since
(ay) is increasing, it then follows that a* — e < a, < a* for all n > N. This proves that (ay)
converges and lima,, = a*.

(iv) Show that the sequence V2, V24+V2,4/2+V2+V2,... defined recursively by an+1 = v/2 + an,
is bounded above by 2 and that it is increasing. Deduce from (iii) that (a,) is convergent and
find its limit.

The sequence (ay,) is defined recursively by a,1 = v/2 + @y, where a; = v/2.

By induction a, < 2 for all n (base case a; = V2 < 2, induction step any1 = V2+a, <
V2+42=2). Also a,, > 0 for all n € N.

Since
ai_i_l—ai :2—i—an—ai: (2 —ap)(an, +1)

and both a, +1 > 0 and 2 — a,, > 0 we have a%H > a2, whence a,y1 > a,. Thus (a,) is
increasing.

By the Monotone Convergence Theorem (iii) the bounded monotone sequence (a,) converges to
a limit /.

By the algebra of limits applied to the equality a2 = 2 + a, we have I2 = 2 + [, whence
(l—2)(I4+1) =0. Since a, > —1 and (ay) is increasing it follows that [ = 2.

[Remark: an explicit — rather than recursive — formula for this sequence is a, = 2 cos 5751 . If you
can recall the double angle formula for the cosine function you might see it. It becomes intuitively
clear that a, — 2 since cos0 = 1 and 6,, = 7/2""1 — 0 — later you will prove this intuition
correct, specifically because the cosine is a continuous function so that lim(cos#6,,) = cos(lim 6,,)
for a convergent sequence (6,,).]



