Mathematical Analysis I

Exercise sheet 3

Solutions to selected exercises
22 October 2015

References: Abbott, 1.3, 1.4 and 8.4. Bartle \& Sherbert 1.3, 2.3, 2.4, 2.5

1. Define a Dedekind cut of the rationals. Fix $r \in \mathbb{Q}$. Show that the set $C_{r}=\{x \in \mathbb{Q}: x<r\}$ is a Dedekind cut.

A subset $A \subseteq \mathbb{Q}$ is a Dedekind cut if
(1) $A \neq \emptyset$ and $A \neq \mathbb{Q}$
(2) $\forall a \in A \quad \forall x \in \mathbb{Q} \quad(x<a \Rightarrow x \in A)$
(3) $\forall a \in A \exists x \in A \quad(a<x) \quad$ (A has no maximum)

A cut is bounded above:
(4) $\exists x \in \mathbb{Q} \quad \forall a \in A \quad(a<x)$.
[Proof: suppose not, then $\forall x \in \mathbb{Q} \exists a \in A \quad x \leq a$, which by property (2) implies $\forall x \in \mathbb{Q} x \in A$, which is to say that $A=\mathbb{Q}$, contrary to property (1).]

The set $C_{r}=\{x \in \mathbb{Q}: x<r\}$ is non-empty and not all of \mathbb{Q}, and for any $a \in C_{r}$ and $x \in \mathbb{Q}$ with $x<a$ we have $x \in C_{r}$ since $x<a<r$ implies $x<r$. Finally, C_{r} has no maximum since for any given $a<r$ we may take $x=\frac{1}{2}(a+r)<r$, which also belongs to C_{r}.
3. For $A, B \subseteq \mathbb{R}$ define

$$
A+B=\{a+b: a \in A, b \in B\}
$$

(i) Show that if A and B are Dedekind cuts then so is $A+B$.

Property (1): If $A, B \notin\{\emptyset, \mathbb{Q}\}$ then clearly $A+B \neq \emptyset$. Also, $A+B \neq \mathbb{Q}$ since A and B are bounded above by (4), so $A+B$ is also bounded above.
Property (2): take an arbitrary element $a+b \in A+B$ and for any $x \in \mathbb{Q}$ with $x<a+b$ we have $x-b<a$ so that $x-b \in A$ (by property (2) for cut A) amd then $x=(x-b)+b \in A+B$, which shows that (2) holds for $A+B$.
Property (3): by property (3) for cuts A and B, for any $a \in A$ and $b \in B$ there are $x \in A$ and $y \in B$ such that $a<x$ and $b<y$. By addition of these inequalities, we have $a+b<x+y$, and also $x+y \in A+B$.
(ii) Let $A=\{x \in \mathbb{Q}: x<a\}$ and $B=\{x \in \mathbb{Q}: x<b\}$ for $a, b \in \mathbb{Q}$. From question 1 we know A and B are Dedekind cuts. What cut is $A+B$?
Let $A=C_{a}$ and $B=C_{b}$. We show that $C_{a}+C_{b}=C_{a+b}$.
$C_{a}+C_{b} \subseteq C_{a+b}$: If $x \in C_{a}, y \in C_{b}$ then $x<a$ and $y<b$, adding together which give $x+y<a+b$, so $x+y \in C_{a+b}$.
$C_{a}+C_{b} \supseteq C_{a+b}$: If $z \in C_{a+b}$ then $z-b<a$ so by property (2) for C_{a} there is $x \in C_{a}$ such that $z-b<x<a$, whence $z<a+b$, i.e., $z \in C_{a}+C_{b}$.
(iii) Define the Dedekind cut $O=\{r \in \mathbb{Q}: r<0\}$. Show that O is an identity for addition of cuts and write down the inverse to a cut A with respect to this operation.
Let $O=\{r \in \mathbb{Q}: r<0\}$. We prove that $A+O=A$ for any cut A.
$A \supseteq A+O$: taking arbitrary $a \in A$ and $z \in O$, we have $a+z<a+0=a$, whence $a+z \in A$.
$A \subseteq A+O$: if $a \in A$ then there is by property (2) for cuts $x \in A$ such that $a<x$. Then $a-x<0$, so that by definition of O there is $z \in O$ such that $z=a-x$, whence $a=x+z \in A+O$.

The additive inverse to A is the cut defined by

$$
-A=\{x \in \mathbb{Q}: \exists y \notin A y<-x\} .
$$

(See the diagram in Abbott, p. 247.)*
Lemma: The cut $-A$ has the property that if $a \in A$ then $-a \in-A$.
Proof. Suppose not. Then for all $y \notin A$ we have $y \geq a$. Hence $A \subseteq\{x \in \mathbb{Q}: x \leq a\}$. But $a \in A$ is then a maximum for A, contradicting property (3) for the cut A.

We show that $A+(-A)=O .^{\dagger}$
$A+(-A) \subseteq O$: If $a \in A$ and $x \in-A$ then there is $y \notin A$ such that $-y>x$, whence $a+x<a-y$ and $a<y$ since $y \notin A$ (by property (2), if $y \leq a$ and $a \in A$ then $y \in A$). Hence $a+x<0$ and so $a+x \in O$.
$A+(-A) \supseteq O$: if $z \in O$ then $z<0=a+(-a)$ for any $a \in A$. By the Lemma above we have $-a \in-A$. This implies $z \in A+(-A)$ by property (2) for the cut O.

[^0]
[^0]: *Faulty choices for defining the inverse include $-A=\{-x: x \in A\}$ (not a cut as it does not satisfy property (2) - this definition of $-A$ "reflects" A about the 0 point of the rational line) and $-A=\{x \in \mathbb{Q}:-x \notin A\}$ (not a cut as it contains a maximum, violating property (3) - the correct definition remedies this by excluding the possibility of a maximum.
 ${ }^{\dagger}$ This was not asked in the question, but is here for purposes of edification.

