Mathematical Analysis I

Exercise sheet 3

22 October 2015

References: Abbott, 1.3, 1.4 and 8.4. Bartle \& Sherbert 1.3, 2.3, 2.4, 2.5

1. Define a Dedekind cut of the rationals. Fix $r \in \mathbb{Q}$. Show that the set $C_{r}=\{x \in \mathbb{Q}: x<r\}$ is a Dedekind cut.

Which of the following subsets of \mathbb{Q} are Dedekind cuts?
(i) $\left\{x \in \mathbb{Q}: x^{2}<2\right\}$
(ii) $\left\{x \in \mathbb{Q}: x^{3}<2\right\}$
(iii) $\left\{x \in \mathbb{Q}: x^{2}<2\right.$ or $\left.x<0\right\}$
(iv) $\left\{x \in \mathbb{Q}: x^{2} \leq 2\right.$ or $\left.x<0\right\}$
2.
(i) Define what it means for a binary relation \leqslant on a set S to be an ordering.
(ii) For Dedekind cuts A and B define the relation " \leqslant " as follows: $A \leqslant B$ if and only if $A \subseteq B$. Show that this defines an ordering on the set of all Dedekind cuts.
3. For $A, B \subseteq \mathbb{R}$ define

$$
A+B=\{a+b: a \in A, b \in B\}
$$

(i) Show that if A and B are Dedekind cuts then so is $A+B$.
(ii) Let $A=\{x \in \mathbb{Q}: x<a\}$ and $B=\{x \in \mathbb{Q}: x<b\}$ for $a, b \in \mathbb{Q}$. From question 1 we know A and B are Dedekind cuts. What cut is $A+B$?
(iii) Define the Dedekind cut $O=\{r \in \mathbb{Q}: r<0\}$. Show that O is an identity for addition of cuts and write down the inverse to a cut A with respect to this operation.
4. Find the suprema and infima of the following sets:
(i) $\left\{n \in \mathbb{N}: n^{2}<12\right\}$
(ii) $\left\{\frac{n}{m+n}: m, n \in \mathbb{N}\right\}$
(iii) $\left\{\frac{n}{2 n+1}: n \in \mathbb{N}\right\}$
(iv) $\left\{\frac{n}{m}: m+n \leq 12\right\}$.
5. Let A and B be non-empty subsets of \mathbb{R} which are bounded above. Show that if $A \subseteq B$ then $\sup B \leqslant \sup B$. State and prove the corresponding inequality relating inf A and $\inf B$ when A and B are bounded below.
6. In this question you may assume that \mathbb{R} is uncountable.
(i) Prove that $(0, \infty)$ is uncountable. [Two approaches are (a) to argue by contradiction, or (b) to produce a bijection from $(0, \infty)$ to \mathbb{R}.]
(ii) Deduce from (i) that the interval $(0,1)$ of \mathbb{R} is uncountable.
(iii) Every real number in $(0,1)$ has a non-terminating binary expansion. For example,

$$
\frac{1}{2}=0 \cdot 01111111 \ldots
$$

is the non-terminating expansion $\frac{1}{2}=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots$, while $0 \cdot 1=\frac{1}{2}$ is terminating, i.e., there are only finitely many $1 \mathrm{~s} .{ }^{1}$ Use this fact and part (ii) to deduce that the set of all infinite subsets of \mathbb{N} is uncountable.

[^0]
[^0]: ${ }^{1}$ Likewise in decimal, we have $0 \cdot 5=0 \cdot 049999 \ldots$ and generally every number has a non-terminating expansion (infinitely many non-zero places).

