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3. (iii) Show that the set of all finite sequences of elements from N is countable. (The case of sequences of
length two is N× N. Use this a basis for induction, together with the result, which you may assume, that a
countable union of countable sets is again countable.) A finite sequence with n terms is an element of the
n-fold Cartesian product Nn. (This is defined recursively as follows: N1 = N and Nn+1 = Nn × N.)∗

First we prove that Nn is countable. We prove this by induction. The base case n = 1 is true as N1 = N.
Suppose as induction hypothesis that Nn is countable. Then

Nn+1 = Nn × N =

∞⋃
k=0

(Nn × {k})

is countable as it is a countable union of countable sets: the set Nn × {k} (all (n+1)-term sequences that
end in k) is countable by induction hypothesis and the obvious bijection from Nn to Nn × {k} that simply
appends the constant value {k} to the end of the n-term sequence.

The set of all infinite sequences of elements from N is equal to

∞⋃
n=1

Nn

and as a countable union of countable sets is itself countable.

4. A real number is algebraic if it is a solution of an equation of the form

a0 + a1x + a2x
2 · · ·+ anx

n = 0, (1)

for some n ∈ N and a0, a1, a2, . . . , an ∈ Z.

(i) Prove that equation (1) has at most n solutions. (You just need the fact that if polynomial p(x) has
root a then p(x) = (x− a)q(x) for some polynomial q(x) of strictly smaller degree.)

Let p(x) = a0 + a1x + a2x
2 · · · + anx

n. If p(a) = 0 then by the remainder theorem for polynomials
p(x) = (x−a)q(x), where q(x) has degree strictly less than the degree n of p(x). When p(x) has degree
n = 1 then there is exactly 1 solution (namely −a0/a1 in the notation of equation (1)). This is a basis
for induction. Assuming a polynomial of degree n− 1 has at most n− 1 distinct roots (solutions), the
polynomial p(x) = (x− a)q(x) has at most one more distinct root (equal to a) than q(x), which may
coincide with a root of q(x), and hence at most n roots altogether.

(ii) With the help of results proved in question 3, show that the set of algebraic numbers is countable.

The coefficients of the polynomial p(x) in equation (1) form a finite length sequence a = (a0, a1, a2 · · · , an) ∈
Zn+1 of n + 1 integers.

To such a finite sequence a corresponds a set Aa of at most n algebraic numbers (the roots of the
polynomial p(x)).

Claim: the set of finite sequences of integers
⋃∞

n=0 Zn+1 is countable.

∗For the exponentiation law Nm×Nn = Nm+n to hold we set N0 = ∅. This can serve as an initial definition for the recursion,
starting with n = 0 instead of n = 1.
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Proof of claim: there is a bijection from Nn+1 to Zn+1 given by the function

(b0, b1, b2, . . . bn) 7→ (g(b0), g(b1), g(b2), . . . , g(bn))

where g : N→ Z is the bijection defined by

g(b) =

{
b
2 b even

− b+1
2 b odd

(the inverse function g−1 : Z→ N sends a negative integer −a ∈ Z to 2a−1 and a positive integer a ∈ Z
to 2a). We know

⋃∞
n=0Nn+1 is countable, and the bijection Nn+1 → Zn+1 defined above establishes

the claim.

The set of all algebraic numbers A is thus given by the countable union

A =
⋃
a

Aa,

where the union is over all finite sequences of integers a, and each Aa is finite. Hence A is countable.

(iii) A real number that is not algebraic is transcendental. What can you conclude from (ii) about the size
of the set of transcendental numbers?

The set of transcendental numbers R \ A cannot be countable for otherwise R = A ∪ (R\A) would
be countable (as a union of two countable sets). But R is uncountable. Hence the transcendental
numbers are uncountably many.

(iv) Write down what statements you would need to prove to establish that the set of algebraic numbers
forms a field. (You are not asked to prove that the algebraic numbers do indeed form a field: the
standard approach is to use resultants, which you may wish to look up for enlightenment.) As A ⊂ R
and R is a field it is only required to verify that the algebraic numbers are closed under addition and
negation, and under multiplication and taking reciprocals (multiplicative inverse). The axioms for
a field (commutative group under addition, commutative group under multiplication, together with
distributivity of multiplication over addition) are inherited from R provided we can establish this
closure property. In other words, we need to show that if a, b ∈ A then a + b,−a, ab, 1a ∈ A. Some
of these are easy: for example, if a ∈ A is the root of p(x) as defined in equation (1), then −a is the
root of p(−x), and 1

a is the root of xnp( 1x). [To construct the polynomials with roots a+ b and ab from
polynomials with roots a and b is harder: for this, look up “resultants” of polynomials.]

(v) Use the number
√

2
√
2

to prove that there exists irrational numbers a and b such that ab is rational.
(Hint: suppose the given number is irrational, and raise it to an appropriate power.)

Either
√

2
√
2 ∈ Q, in which case we are done (a =

√
2 = b), or

√
2
√
2 6∈ Q, and then (

√
2
√
2
)
√
2 =
√

2
2

=

2 so that a =
√

2
√
2

and b =
√

2 would give an example of irrationals such that ab ∈ Q. (We don’t
know which is true, but we do know at least one of them is. This is an example of a non-constructive
proof: showing the existence of something without being able to name a specific example, or give any
algorithm to find such an example.)

(The number
√

2
√
2

is in fact known to be transcendental, although proving this is not easy. A corollary of

a theorem of Gelfond and Schneider is that when a is an algebraic number not equal to 0 or 1, and b is an

irrational algebraic number then ab is transcendental.)

8.

(i) Show that if S ⊆ R is bounded and T ⊆ S then inf S ≤ inf T ≤ supT ≤ supS.

Recall that u is a supremum for S if

(a) u is an upper bound for S

(b) if v is any upper bound for S then u ≤ v.
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Let u = supS. As s ≤ u for all s ∈ S, it follows that t ≤ u for all t ∈ T (T ⊆ S implies t ∈ S whenever
t ∈ T ). Hence u is an upper bound for T . By definition of the supremum of T as the least upper
bound for T , it follows that supT ≤ u. This is to say supT ≤ supS.

To prove inf S ≤ inf T , either use inf S = − sup(−S) and inf T = − sup(−T ) and by the previous
− sup(−T ) ≤ − sup(−S), which give the result, or argue directly that if l = inf S then l ≤ s for each
s ∈ S and hence for each s ∈ T , so l is a lower bound for T , whence l ≤ inf T as inf T is the greatest
lower bound for T .

That inf S ≤ supS is clear: for each s ∈ S we have inf S ≤ s and s ≤ supS, whence inf S ≤ supS by
transitivity of ≤.

(ii) Suppose S ⊆ R contains supS as an element, i.e., supS = maxS. Show that if x 6∈ S then sup(S ∪
{x}) = sup{supS, x}.
If x ≥ supS then x ≥ s for all s ∈ S (since supS is an upper bound for S), and so x is an upper
bound for S ∪ {x} which is a maximum. (The number x is a least upper bound for S ∪ {x} since any
upper bound must be at least x itself.) Hence sup(S ∪ {x}) = x in this case.

If x < supS then x is not an upper bound for S (since supS is the least upper bound for S) and hence
neither for S ∪ {x}. Thus sup(S ∪ {x}) = supS in this case.

Together these say that sup(S ∪ {x}) = max{supS, x}.

(iii) Deduce from (ii), using mathematical induction, that any finite set S ⊆ R contains its supremum, i.e.,
supS = maxS when S is finite.

Let S be a finite set of n distinct reals.
When n = 1, where S = {s} is a singleton, we have supS = maxS = s, since s ≤ supS (supS is an

upper bound for S) and s, as the maximum element of S, is an upper bound (so s ≥ supS, the least upper
bound for S).

Assume that supS = maxS for any set S ⊂ R of size n. A set of n + 1 reals takes the form S ∪ {x} for
some x ∈ R \ S. By (ii), sup(S ∪ {x}) = max{supS, x} and by induction hypothesis supS = maxS. Thus
sup(S ∪ {x}) = max{maxS, x} = max(S ∪ {x}).

For the last step we used the obvious fact that max{s1, s2, . . . , sn, x} = max{max{s1, . . . , sn}, x}. [You
might think how to prove this last fact, though – see Bartle & Sherbert ex. 2.2.16, which shows the base case
(for min instead of max).]
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