Mathematical Analysis I

Exercise sheet 2

Solutions to selected exercises
15 October 2015
3. (iii) Show that the set of all finite sequences of elements from \mathbb{N} is countable. (The case of sequences of length two is $\mathbb{N} \times \mathbb{N}$. Use this a basis for induction, together with the result, which you may assume, that a countable union of countable sets is again countable.) A finite sequence with n terms is an element of the n-fold Cartesian product \mathbb{N}^{n}. (This is defined recursively as follows: $\mathbb{N}^{1}=\mathbb{N}$ and $\mathbb{N}^{n+1}=\mathbb{N}^{n} \times \mathbb{N}$.)*

First we prove that \mathbb{N}^{n} is countable. We prove this by induction. The base case $n=1$ is true as $\mathbb{N}^{1}=\mathbb{N}$. Suppose as induction hypothesis that \mathbb{N}^{n} is countable. Then

$$
\mathbb{N}^{n+1}=\mathbb{N}^{n} \times \mathbb{N}=\bigcup_{k=0}^{\infty}\left(\mathbb{N}^{n} \times\{k\}\right)
$$

is countable as it is a countable union of countable sets: the set $\mathbb{N}^{n} \times\{k\}$ (all ($n+1$)-term sequences that end in k) is countable by induction hypothesis and the obvious bijection from \mathbb{N}^{n} to $\mathbb{N}^{n} \times\{k\}$ that simply appends the constant value $\{k\}$ to the end of the n-term sequence.

The set of all infinite sequences of elements from \mathbb{N} is equal to

$$
\bigcup_{n=1}^{\infty} \mathbb{N}^{n}
$$

and as a countable union of countable sets is itself countable.
4. A real number is algebraic if it is a solution of an equation of the form

$$
\begin{equation*}
a_{0}+a_{1} x+a_{2} x^{2} \cdots+a_{n} x^{n}=0 \tag{1}
\end{equation*}
$$

for some $n \in \mathbb{N}$ and $a_{0}, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$.
(i) Prove that equation (1) has at most n solutions. (You just need the fact that if polynomial $p(x)$ has root a then $p(x)=(x-a) q(x)$ for some polynomial $q(x)$ of strictly smaller degree.)
Let $p(x)=a_{0}+a_{1} x+a_{2} x^{2} \cdots+a_{n} x^{n}$. If $p(a)=0$ then by the remainder theorem for polynomials $p(x)=(x-a) q(x)$, where $q(x)$ has degree strictly less than the degree n of $p(x)$. When $p(x)$ has degree $n=1$ then there is exactly 1 solution (namely $-a_{0} / a_{1}$ in the notation of equation (1)). This is a basis for induction. Assuming a polynomial of degree $n-1$ has at most $n-1$ distinct roots (solutions), the polynomial $p(x)=(x-a) q(x)$ has at most one more distinct root (equal to a) than $q(x)$, which may coincide with a root of $q(x)$, and hence at most n roots altogether.
(ii) With the help of results proved in question 3 , show that the set of algebraic numbers is countable.

The coefficients of the polynomial $p(x)$ in equation (1) form a finite length sequence $\mathbf{a}=\left(a_{0}, a_{1}, a_{2} \cdots, a_{n}\right) \in$ \mathbb{Z}^{n+1} of $n+1$ integers.
To such a finite sequence a corresponds a set A_{a} of at most n algebraic numbers (the roots of the polynomial $p(x)$).

Claim: the set of finite sequences of integers $\bigcup_{n=0}^{\infty} \mathbb{Z}^{n+1}$ is countable.

[^0]Proof of claim: there is a bijection from \mathbb{N}^{n+1} to \mathbb{Z}^{n+1} given by the function

$$
\left(b_{0}, b_{1}, b_{2}, \ldots b_{n}\right) \mapsto\left(g\left(b_{0}\right), g\left(b_{1}\right), g\left(b_{2}\right), \ldots, g\left(b_{n}\right)\right)
$$

where $g: \mathbb{N} \rightarrow \mathbb{Z}$ is the bijection defined by

$$
g(b)= \begin{cases}\frac{b}{2} & b \text { even } \\ -\frac{b+1}{2} & b \text { odd }\end{cases}
$$

(the inverse function $g^{-1}: \mathbb{Z} \rightarrow \mathbb{N}$ sends a negative integer $-a \in \mathbb{Z}$ to $2 a-1$ and a positive integer $a \in \mathbb{Z}$ to $2 a$). We know $\bigcup_{n=0}^{\infty} \mathbb{N}^{n+1}$ is countable, and the bijection $\mathbb{N}^{n+1} \rightarrow \mathbb{Z}^{n+1}$ defined above establishes the claim.

The set of all algebraic numbers \mathbb{A} is thus given by the countable union

$$
\mathbb{A}=\bigcup_{\mathbf{a}} A_{\mathbf{a}}
$$

where the union is over all finite sequences of integers \mathbf{a}, and each $A_{\mathbf{a}}$ is finite. Hence \mathbb{A} is countable.
(iii) A real number that is not algebraic is transcendental. What can you conclude from (ii) about the size of the set of transcendental numbers?
The set of transcendental numbers $\mathbb{R} \backslash \mathbb{A}$ cannot be countable for otherwise $\mathbb{R}=\mathbb{A} \cup(R \backslash \mathbb{A})$ would be countable (as a union of two countable sets). But \mathbb{R} is uncountable. Hence the transcendental numbers are uncountably many.
(iv) Write down what statements you would need to prove to establish that the set of algebraic numbers forms a field. (You are not asked to prove that the algebraic numbers do indeed form a field: the standard approach is to use resultants, which you may wish to look up for enlightenment.) As $\mathbb{A} \subset \mathbb{R}$ and \mathbb{R} is a field it is only required to verify that the algebraic numbers are closed under addition and negation, and under multiplication and taking reciprocals (multiplicative inverse). The axioms for a field (commutative group under addition, commutative group under multiplication, together with distributivity of multiplication over addition) are inherited from \mathbb{R} provided we can establish this closure property. In other words, we need to show that if $a, b \in \mathbb{A}$ then $a+b,-a, a b, \frac{1}{a} \in \mathbb{A}$. Some of these are easy: for example, if $a \in \mathbb{A}$ is the root of $p(x)$ as defined in equation (1), then $-a$ is the root of $p(-x)$, and $\frac{1}{a}$ is the root of $x^{n} p\left(\frac{1}{x}\right)$. [To construct the polynomials with roots $a+b$ and ab from polynomials with roots a and b is harder: for this, look up "resultants" of polynomials.]
(v) Use the number $\sqrt{2}^{\sqrt{2}}$ to prove that there exists irrational numbers a and b such that a^{b} is rational. (Hint: suppose the given number is irrational, and raise it to an appropriate power.)
Either $\sqrt{2}^{\sqrt{2}} \in \mathbb{Q}$, in which case we are done $\left(a=\sqrt{2}=b\right.$), or $\sqrt{2}^{\sqrt{2}} \notin \mathbb{Q}$, and then $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{2}=$ 2 so that $a=\sqrt{2}^{\sqrt{2}}$ and $b=\sqrt{2}$ would give an example of irrationals such that $a^{b} \in \mathbb{Q}$. (We don't know which is true, but we do know at least one of them is. This is an example of a non-constructive proof: showing the existence of something without being able to name a specific example, or give any algorithm to find such an example.)
(The number $\sqrt{2}^{\sqrt{2}}$ is in fact known to be transcendental, although proving this is not easy. A corollary of a theorem of Gelfond and Schneider is that when a is an algebraic number not equal to 0 or 1 , and b is an irrational algebraic number then a^{b} is transcendental.)
8.
(i) Show that if $S \subseteq \mathbb{R}$ is bounded and $T \subseteq S$ then $\inf S \leq \inf T \leq \sup T \leq \sup S$.

Recall that u is a supremum for S if
(a) u is an upper bound for S
(b) if v is any upper bound for S then $u \leq v$.

Let $u=\sup S$. As $s \leq u$ for all $s \in S$, it follows that $t \leq u$ for all $t \in T$ ($T \subseteq S$ implies $t \in S$ whenever $t \in T$). Hence u is an upper bound for T. By definition of the supremum of T as the least upper bound for T, it follows that $\sup T \leq u$. This is to $\operatorname{say} \sup T \leq \sup S$.
To prove $\inf S \leq \inf T$, either use $\inf S=-\sup (-S)$ and $\inf T=-\sup (-T)$ and by the previous $-\sup (-T) \leq-\sup (-S)$, which give the result, or argue directly that if $l=\inf S$ then $l \leq s$ for each $s \in S$ and hence for each $s \in T$, so l is a lower bound for T, whence $l \leq \inf T$ as $\inf T$ is the greatest lower bound for T.
That $\inf S \leq \sup S$ is clear: for each $s \in S$ we have $\inf S \leq s$ and $s \leq \sup S$, whence $\inf S \leq \sup S$ by transitivity of \leq.
(ii) Suppose $S \subseteq \mathbb{R}$ contains $\sup S$ as an element, i.e., $\sup S=\max S$. Show that if $x \notin S$ then $\sup (S \cup$ $\{x\})=\sup \{\sup S, x\}$.
If $x \geq \sup S$ then $x \geq s$ for all $s \in S$ (since sup S is an upper bound for S), and so x is an upper bound for $S \cup\{x\}$ which is a maximum. (The number x is a least upper bound for $S \cup\{x\}$ since any upper bound must be at least x itself.) Hence $\sup (S \cup\{x\})=x$ in this case.
If $x<\sup S$ then x is not an upper bound for S (since $\sup S$ is the least upper bound for S) and hence neither for $S \cup\{x\}$. Thus $\sup (S \cup\{x\})=\sup S$ in this case.
Together these say that $\sup (S \cup\{x\})=\max \{\sup S, x\}$.
(iii) Deduce from (ii), using mathematical induction, that any finite set $S \subseteq \mathbb{R}$ contains its supremum, i.e., $\sup S=\max S$ when S is finite.

Let S be a finite set of n distinct reals.
When $n=1$, where $S=\{s\}$ is a singleton, we have $\sup S=\max S=s$, $\operatorname{since} s \leq \sup S(\sup S$ is an upper bound for S) and s, as the maximum element of S, is an upper bound (so $s \geq \sup S$, the least upper bound for S).

Assume that $\sup S=\max S$ for any set $S \subset \mathbb{R}$ of size n. A set of $n+1$ reals takes the form $S \cup\{x\}$ for some $x \in \mathbb{R} \backslash S$. By (ii), $\sup (S \cup\{x\})=\max \{\sup S, x\}$ and by induction hypothesis $\sup S=\max S$. Thus $\sup (S \cup\{x\})=\max \{\max S, x\}=\max (S \cup\{x\})$.

For the last step we used the obvious fact that $\max \left\{s_{1}, s_{2}, \ldots, s_{n}, x\right\}=\max \left\{\max \left\{s_{1}, \ldots, s_{n}\right\}, x\right\}$. [You might think how to prove this last fact, though - see Bartle EG Sherbert ex. 2.2.16, which shows the base case (for min instead of max).]

[^0]: ${ }^{*}$ For the exponentiation law $\mathbb{N}^{m} \times \mathbb{N}^{n}=\mathbb{N}^{m+n}$ to hold we set $\mathbb{N}^{0}=\emptyset$. This can serve as an initial definition for the recursion, starting with $n=0$ instead of $n=1$.

