Mathematical Analysis I Exercise sheet 2

15 October 2015

- 1. Suppose that a, b, c, d are positive integers such that $\frac{a}{b} < \frac{c}{d}$.
 - (i) Prove that $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$. The fraction $\frac{a+c}{b+d}$ is called the *mediant* of $\frac{a}{b}$ and $\frac{c}{d}$.
 - (ii) Prove that for positive rationals u and v the weighted mediant $\frac{ua+vc}{ub+vd}$ also lies between $\frac{a}{b}$ and $\frac{c}{d}$.
- (iii) Assume further in (i) that bc ad = 1. Prove that the mediant of $\frac{a}{b}$ and $\frac{c}{d}$ is the rational with least denominator that lies between them. More precisely, if p, q are positive integers such that $\frac{a}{b} < \frac{p}{q} < \frac{c}{d}$ then there are positive integers u, v such that p = ua + vc and q = ub + vd. (You may assume that $\frac{p}{q}$ is a weighted mediant of $\frac{a}{b}$ and $\frac{c}{d}$, i.e., that p = ua + vc and q = ub + vd for some $u, v \in \mathbb{Q}$. Consider the positive differences $\frac{ua+vc}{ub+vd} \frac{a}{b}$ and $\frac{c}{d} \frac{ua+vc}{ub+vd}$ along with the given assumption bc ad = 1.)
- 2. Suppose a, b are positive integers with a > b such that $\left|\frac{a}{b} \sqrt{2}\right| < \epsilon$. Prove that

$$\frac{a+2b}{a+b} - \sqrt{2}| < \frac{1}{2+2\sqrt{2}}\epsilon,$$

(ii)

$$|\frac{a^2 + 2b^2}{2ab} - \sqrt{2}| < \frac{1}{2}\epsilon^2.$$

Use (ii) to give a rational approximation to $\sqrt{2}$ that is within 2^{-15} of $\sqrt{2}$.

- 3. Define what is means for a set to be *countable*.
 - (i) Show that the following statements are equivalent:
 - (a) S is a countable set.
 - (b) There exists a surjection from \mathbb{N} onto S.
 - (c) There exists an injection from S into \mathbb{N} .
 - (ii) Show that the set of all finite subsets of \mathbb{N} is a countable set. Is the set of all subsets of \mathbb{N} countable?
- (iii) Show that the set of all finite sequences of elements from \mathbb{N} is countable. (The case of sequences of length two is $\mathbb{N} \times \mathbb{N}$. Use this a basis for induction, together with the result, which you may assume, that a countable union of countable sets is again countable.)
- 4. A real number is *algebraic* if it is a solution of an equation of the form

$$a_0 + a_1 x + a_2 x^2 \dots + a_n x^n = 0, \tag{1}$$

for some $n \in \mathbb{N}$ and $a_0, a_1, a_2, \ldots, a_n \in \mathbb{Z}$.

(i) Prove that equation (1) has at most n solutions. (You just need the fact that if polynomial p(x) has root a then p(x) = (x - a)q(x) for some polynomial q(x) of strictly smaller degree.)

- (ii) With the help of results proved in question 3, show that the set of algebraic numbers is countable.
- (iii) A real number that is not algebraic is *transcendental*. What can you conclude from (ii) about the size of the set of transcendental numbers?
- (iv) Write down what statements you would need to prove to establish that the set of algebraic numbers forms a field. (You are not asked to prove that the algebraic numbers do indeed form a field: the standard approach is to use resultants, which you may wish to look up for enlightenment.)
- (v) Use the number $\sqrt{2}^{\sqrt{2}}$ to prove that there exists irrational numbers *a* and *b* such that a^b is rational. (*Hint: suppose the given number is irrational, and raise it to an appropriate power.*)

(The number $\sqrt{2}^{\sqrt{2}}$ is in fact known to be transcendental, although proving this is not easy. A corollary of a theorem of Gelfond and Schneider is that when a is an algebraic number not equal to 0 or 1, and b is an irrational algebraic number then a^b is transcendental.)

6.

- (i) (Archimedean property) Prove that for any $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ such that x < n. Deduce as a corollary that for each $y \in \mathbb{R}$ there is $n \in \mathbb{N}$ with $n 1 \le y < n$.
- (ii) Show using (i) that for any real number $\epsilon > 0$ there is $N \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$ for each natural number $n \ge N$.
- (iii) (Density of the rationals) With the help of (i), prove that for any two real numbers x, y with x < y there is a rational number r with x < r < y. Deduce that the set $\{r \in \mathbb{Q} : r^2 < 2\}$ has no least upper bound in \mathbb{Q} .
- (iv) Deduce from (iii) that the irrationals are also dense in the real line, i.e., for any $x < y \in \mathbb{R}$ there is $z \in \mathbb{R} \setminus \mathbb{Q}$ such that x < z < y.
- 7. The *absolute value* function is defined on \mathbb{R} by

$$|x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

Prove that, for $x, y \in \mathbb{R}$,

- (i) |xy| = |x| |y|
- (ii) $|x + y| \le |x| + |y|$ (when does equality hold?)
- (iii) $x^2 \le y^2$ if and only if $|x| \le |y|$.

Part (ii) is the *Triangle Inequality* and is often written in the alternative form $|a - b| \le |a - c| + |c - b|$ for any reals a, b, c (take x = a - c and y = c - b).

(iv) Deduce from the Triangle Inequality that, for $x, y \in \mathbb{R}$, $|x - y| \le |x| + |y|$ and $||x| - |y|| \le |x - y|$.

(v) Show that $\max\{x, y\} = \frac{1}{2}(x + y + |x - y|)$ and $\min\{x, y\} = \frac{1}{2}(x + y - |x - y|)$.

8.

- (i) Show that is $S \subseteq \mathbb{R}$ is bounded and $T \subseteq S$ then $\inf S \leq \inf T \leq \sup T \leq \sup S$.
- (ii) Suppose $S \subseteq \mathbb{R}$ contains $\sup S$ as an element, i.e., $\sup S = \max S$. Show that if $x \notin S$ then $\sup(S \cup \{x\}) = \sup\{\sup S, x\}$.
- (iii) Deduce from (i), using mathematical induction, that any finite set $S \subseteq \mathbb{R}$ contains its supremum, i.e., $\sup S = \max S$ when S is finite.