Mathematical Analysis I

 Exercise sheet 1

 Exercise sheet 1}

Solutions to selected exercises
8 October 2015
3. For a function $f: X \rightarrow Y$ and $A \subseteq X$ we define $f(A)=\{f(x): x \in A\}$. Thus $f(X)$ is the range of f with domain X.
(ii) Show that if $f: X \rightarrow Y$ and $A, B \subseteq X$ then $f(A \cup B)=f(A) \cup f(B)$ and $f(A \cap B) \subseteq f(A) \cap f(B)$.
By definition $A \cup B=\{x: x \in A \vee x \in B\}$. We have then

$$
\begin{equation*}
y \in f(A \cup B) \Leftrightarrow y \in\{f(x): x \in A \vee x \in B\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y \in f(A) \cup f(B) \Leftrightarrow y \in\{f(x): x \in A\} \vee y \in\{f(x): x \in B\} . \tag{2}
\end{equation*}
$$

We have

$$
\begin{array}{rlrl}
y \in\{f(x): x \in A \vee x \in B\} & \Leftrightarrow & \exists x(y=f(x)) \wedge[(x \in A) \vee(x \in B)] \\
& \Leftrightarrow & \exists x[(y=f(x)) \wedge(x \in A)] \quad \vee & {[(y=f(x)) \wedge(x \in B)]} \\
& \Leftrightarrow & \exists x[(x \in A) \wedge(y=f(x))] \vee \quad \exists x[(x \in B) \wedge(y=f(x))] \\
& \Leftrightarrow & \exists x \in A[y=f(x)] \quad \vee \quad \exists x \in B[y=f(x)] \\
& \Leftrightarrow & y \in\{f(x): x \in A\} \vee y \in\{f(x): x \in B\}
\end{array}
$$

In moving from the first line to the second line we used distributivity of \wedge over \vee, i.e., $P \wedge(Q \vee R) \Leftrightarrow(P \wedge Q) \vee(P \wedge R)$.

For the second to the third line we used $\exists x[P(x) \vee Q(x)] \Leftrightarrow \exists x P(x) \vee \exists x Q(x)$. (However, it is not the case that $\exists x[P(x) \wedge Q(x)] \Leftrightarrow \exists x P(x) \wedge \exists x Q(x)$ - take for example $P(x)=\neg Q(x)$ and the former statement is false, while the latter can be true, for example if $P(x)$ means x is an even number. We only have $\exists x[P(x) \wedge Q(x)] \Rightarrow \exists x P(x) \wedge \exists x Q(x)$, which allows us to prove similarly [perhaps you ought to write it out] that $f(A \cap B) \subseteq f(A) \cap f(B)$, but in general $f(A \cap B) \neq f(A) \cap f(B).)^{1}$

[^0]As an extra exercise, we prove here that $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$, where the inverse image is defined by $f^{-1}(A)=\{x: f(x) \in A\}$, the variable x having domain that of f.
Note that $x \in f^{-1}(A)$ if and only if $f(x) \in A$.
We have

$$
\begin{array}{rlr}
x \in f^{-1}(A \cap B) & \Leftrightarrow & f(x) \in A \cap B \\
& \Leftrightarrow & f(x) \in A \wedge f(x) \in B \\
& \Leftrightarrow & x \in f^{-1}(A) \wedge x \in f^{-1}(B) \\
& \Leftrightarrow & x \in f^{-1}(A) \cap f^{-1}(B) .
\end{array}
$$

It is also the case that $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$, as can be seen by swapping \vee for \wedge (and \cup for \cap) in the above.
(iii) Let $f(x)=x^{2}$ for $x \in \mathbb{R}$ and $A=\{x \in \mathbb{R}:-1 \leq x \leq 0\}$ and $B=\{x \in \mathbb{R}: 0 \leq$ $x \leq 1\}$. Show that $A \cap B=\{0\}$ and $f(A \cap B)=\{0\}$, while $f(A)=f(B)=\{y \in$ $\mathbb{R}: 0 \leq y \leq 1\}$. Hence $f(A \cap B)$ is a proper subset of $f(A) \cap f(B)$.
Write down the sets $A \backslash B$ and $f(A) \backslash f(B)$ and show that it is not true that $f(A \backslash B) \subseteq f(A) \backslash f(B)$.
$A \cap B=\{0\}$ since $0 \in A \cap B$ and if $x \in A \cap B$ then $x \leq 0$ and $x \geq 0$, which together imply $x=0$.
For $f(A \cap B)$ we have $f(\{0\})=\{f(0)\}=\{0\}$.
By definition $f(A)=\left\{x^{2}:-1 \leq x \leq 0\right\}=\{y: 0 \leq y \leq 1\}$ and $f(B)=\left\{x^{2}: 0 \leq\right.$ $x \leq 1\}=\{y: 0 \leq y \leq 1\}$.
So here $f(A \cap B)=\{0\} \subsetneq[0,1]$.
In interval notation, $A \backslash B=[-1,0)$ and $f(A) \backslash f(B)=\emptyset$
6. Two sets A and B are equinumerous if there is a bijection $f: A \rightarrow B$. Show that the relation of being equinumerous is an equivalence relation.

Let $A \cong B$ denote the relation that A is equinumerous with B. Then $A \cong A$ since the identity map $f(x)=x$ gives a bijection from A to itself. Supposing $A \cong B$ it follows that $B \cong A$ since a bijection $f: A \rightarrow B$ has a bijective inverse $f^{-1}: B \rightarrow A$.

Finally, if $A \cong B$ and $B \cong C$ and $f: A \rightarrow B$ and $g: B \rightarrow C$ are two bijections exhibiting these equivalences, then the composite map $g \circ f: A \rightarrow C$ gives a bijection establishing $A \cong C$.
(I have assumed for this question that a bijection has a bijective inverse and that the composition of two bijections is again a bijection. To continue your soul's nutrition, you ought to prove these two facts.)
(i) For $a, b \in \mathbb{R}$ with $a<b$ give an explicit bijection from $A=\{x: a<x<b\}$ onto $B=\{y: 0<y<1\}$. Show that $\{x \in \mathbb{R}: x>0\}$ is equinumerous with \mathbb{R}, and, finally, deduce that the set A is equinumerous with \mathbb{R}.
To map the interval (a, b) bijectively to $(0,1)$ we translate by a leftwards to make $(0, b-a)$ and then scale by $\frac{1}{b-a}$ to obtain $(0,1)$, i.e., the function $f(x)=\frac{x-a}{b-a}$ maps (a, b) bijectively to $(0,1)$.
The interval $(0, \infty)$ is equinumerous with the whole real ine $(-\infty, \infty)$ by applying the bijection:

$$
f(x)= \begin{cases}\frac{1}{x}-1 & 0<x \leq 1 \\ 1-x & 1<x\end{cases}
$$

This maps the subinterval $(0,1]$ bijectively to $[0, \infty)$ and the subinterval $(1, \infty)$ bijectively to $(-\infty, 0)$.
Since $(0,1)$ maps bijectively to $(0, \infty)$ via the map $f(x)=\frac{1}{x}$, we have, using the notation \cong for equinumerous, $(a, b) \cong(0,1) \cong(0, \infty) \cong(-\infty, \infty)$, and transitivity yields the desired result that $(a, b) \cong \mathbb{R}$.
(ii) A real number is algebraic if it is a solution of an equation of the form

$$
a_{0}+a_{1} x+a_{2} x^{2} \cdots+a_{n} x^{n}=0
$$

for some $n \in \mathbb{N}$ and $a_{0}, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$.
Show that the set of algebraic numbers is equinumerous with \mathbb{N}. (You may assume the fact that a set X is equinumerous with \mathbb{N} if and only if there is a surjection from \mathbb{N} onto X. Start with the fact that \mathbb{Z} is equinumerous with \mathbb{N} and go on to establish that there is a surjection from \mathbb{N} onto the set of algebraic numbers.)
This part of the question has been moved to Exercise Sheet 2 (questions 3 and 4(ii))

[^0]: ${ }^{1}$ Dually, we have $\forall x P(x) \wedge Q(x) \Leftrightarrow \forall x P(x) \wedge \forall x Q(x)$, but only $\forall x P(x) \vee Q(x) \Leftarrow \forall x P(x) \vee \forall x Q(x)$. Give a counterexample to show the converse implication does not hold.

