Mathematical Analysis I

Exercise sheet 11

Solutions

7 January 2016

References: Abbott 6.6. Bartle \& Sherbert 6.4

1. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that f and its derivatives $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are continuous on $[a, b]$ and that $f^{(n+1)}$ exists on (a, b).
(i) Let $x_{0} \in[a, b]$. Show that the polynomial $P_{n}(x)$ defined by

$$
P_{n}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

has the property that $P_{n}^{(k)}\left(x_{0}\right)=f^{(k)}\left(x_{0}\right)$ for each $k=0,1, \ldots, n$. [The polynomial P_{n} is called the nth Taylor polynomial for f at x_{0}.]
The polynomial

$$
P_{n}(x)=\sum_{i=0}^{n} \frac{f^{(i)}\left(x_{0}\right)}{i!}\left(x-x_{0}\right)^{i}
$$

has k th derivative

$$
P_{n}^{(k)}(x)=\sum_{i=k}^{n} \frac{f^{(i)}\left(x_{0}\right)}{(i-k)!}\left(x-x_{0}\right)^{i-k}
$$

since $\left(x-x_{0}\right)^{i}$ has k th derivative $i(i-1) \cdots(i-k+1)\left(x-x_{0}\right)^{i-k}$, using the chain rule for derivatives and induction on k, and

$$
\frac{i(i-1) \cdots(i-k+1)}{i!}=\frac{1}{(i-k)!}
$$

Setting $x=x_{0}$ gives the result that

$$
P_{n}^{(k)}\left(x_{0}\right)=f^{(k)}\left(x_{0}\right)
$$

since $\frac{f^{(i)}\left(x_{0}\right)}{(i-k)!} 0^{i-k}=0$ when $i>k$ and $\left(x-x_{0}\right)^{0}=1$.
(ii) Taylor's Theorem with the Lagrange form for the remainder term states that, for any $x \in[a, b]$ there is $c \in\left(x_{0}, x\right)$ such that

$$
f(x)=P_{n}(x)+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

where P_{n} is the nth Taylor polynomial for f at x_{0} defined in (i). Find the Taylor polynomial P_{n} for e^{x} at x_{0} and show that the remainder term converges to 0 as $n \rightarrow \infty$ for each fixed x_{0} and x. [Use the fact that if $\left(a_{n}\right)$ is a sequence of positive reals such that $\lim a_{n+1} / a_{n}$ exists and is <1 then $\lim a_{n}=0$.]
Let $f(x)=e^{x}$. Then $f^{(k)}(x)=e^{x}$, so that $f^{(k)}\left(x_{0}\right)=e^{x_{0}}$ and e^{x} has nth Taylor polynomial at x_{0} given by

$$
P_{n}(x)=\sum_{i=0}^{n} \frac{e^{x_{0}}}{i!}\left(x-x_{0}\right)^{i}
$$

and the remainder term is given by

$$
e^{x}-\sum_{i=0}^{n} \frac{e^{x_{0}}}{i!}\left(x-x_{0}\right)^{i}=\frac{e^{c}}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

where $c \in\left(x_{0}, x\right)$.
The sequence $\left(a_{n}\right)$ of remainder terms, defined by $a_{n}=\frac{e^{c}}{(n+1)!}\left(x-x_{0}\right)^{n+1}$, has the property that

$$
\frac{a_{n+1}}{a_{n}}=\frac{1}{n+2}\left(x-x_{0}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Hence $\left(a_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ (by the ratio test for sequences given in the hint).
(iii) Find the Taylor polynomial P_{n} for $f(x)=\sin x$ at $x_{0}=0$ and prove that the remainder term converges to 0 as $n \rightarrow \infty$ for each x. We have $f^{\prime}(x)=\cos x, f^{\prime \prime}(x)=-\sin x, f^{(3)}(x)=-\cos x$ and $f^{(4)}(x)=\sin x=f(x)$. Thus, for $k \geq 0$,

$$
f^{(k)}(x)=\left\{\begin{array}{lll}
\sin x & k \equiv 0 & (\bmod 4) \\
\cos x & k \equiv 1 & (\bmod 4) \\
-\sin x & k \equiv 2 & (\bmod 4) \\
-\cos x & k \equiv 3 & (\bmod 4)
\end{array}\right.
$$

where $k \equiv r(\bmod 4)$ means that k leaves remainder r on division by 4 . At $x=0$,

$$
f^{(k)}(0)=\left\{\begin{array}{lll}
0 & k \equiv 0 & (\bmod 4) \\
1 & k \equiv 1 & (\bmod 4) \\
0 & k \equiv 2 & (\bmod 4) \\
-1 & k \equiv 3 & (\bmod 4)
\end{array}\right.
$$

i.e.

$$
f^{(k)}(0)=\left\{\begin{array}{lll}
(-1)^{\frac{k-1}{2}} & k \equiv 1 & (\bmod 2) \\
0 & k \equiv 0 & (\bmod 2)
\end{array}\right.
$$

Hence the Taylor polynomial of $f(x)=\sin x$ at $x_{0}=0$ is given by

$$
P_{2 n-1}(x)=P_{2 n}(x)=\sum_{i=0}^{n-1} \frac{(-1)^{i}}{(2 i+1)!} x^{i}
$$

and the remainder by

$$
\sin x-P_{2 n-1}(x)=\frac{(-1)^{n} \sin c}{(2 n)!} x^{2 n}
$$

for odd $2 n-1$, for some $c \in\left(x_{0}, x\right)$, and

$$
\sin x-P_{2 n}(x)=\frac{(-1)^{n} \cos c}{(2 n+1)!} x^{2 n+1}
$$

for even $2 n$, for some $c \in\left(x_{0}, x\right)$.
Using the ratio test for sequences again as in (ii), both these remainder terms converge to 0 as $n \rightarrow \infty$. For example, in the first case the ratio of remainders is in absolute value equal to $\frac{|x|}{(2 n+1)(2 n+2)}$, which converges to 0 as $n \rightarrow \infty$, from which we deduce so does the sequence $\frac{(-1)^{n} \sin c}{(2 n)!} x^{2 n}$. We conclude that the infinite series

$$
\sum_{i=0}^{\infty} \frac{(-1)^{i}}{(2 i+1)!} x^{i}
$$

converges pointwise to $\sin x$ (i.e., for each $x \in \mathbb{R}$ the series converges to a limit, and this limit is $\sin x)$.
(iv) Find the nth Taylor polynomial for $f(x)=(1+x)^{-m}$ at $x_{0}=0$, where m is a positive integer.

We have $f^{(k)}(x)=(-1)^{k} m(m+1) \cdots(m+k-1)(1+x)^{-m-k}$ so that the nth Taylor polynomial of $f(x)=(1+x)^{-m}$ at 0 is given by

$$
\begin{aligned}
P_{n}(x) & =\sum_{i=0}^{n} \frac{(-1)^{i} m(m+1) \cdots(m+i-1)}{i!} x^{i} \\
& =\sum_{i=0}^{n}(-1)^{i}\binom{m+i-1}{i} x^{i} .
\end{aligned}
$$

The Lagrange form of the remainder is

$$
(1+x)^{-m}-\sum_{i=0}^{n}(-1)^{i}\binom{m+i-1}{i} x^{i}=(-1)^{n+1}\binom{m+n}{n+1}(1+c)^{-m-n-1}
$$

for some $c \in(0, x)$.
Exercise: for which values of x does this remainder converge to 0 ?
2.
(i) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be n times differentiable on (a, b). Use induction to prove Leibnitz's rule for the nth derivative of a product

$$
(f g)^{(n)}(x)=\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)}(x) g^{(k)}(x)
$$

for $x \in(a, b)$. The base case $n=0$ holds since $\binom{0}{0}=1$ and $f^{(0)}(x)=f(x), g^{(0)}(x)=g(x)$. The case $n=1$ is the product rule for derivatives:

$$
(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) .
$$

Assume the truth of the statement for a given n. Then

$$
\begin{aligned}
(f g)^{(n+1)}(x) & =\left[(f g)^{(n)}\right]^{\prime} \\
& =\left(\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)}(x) g^{(k)}(x)\right)^{\prime}
\end{aligned}
$$

by induction hypothesis. By linearity of differentiation and applying the product rule for the case $n=1$,

$$
\begin{aligned}
(f g)^{(n+1)}(x) & =\sum_{k=0}^{n}\binom{n}{k}\left[f^{(n-k+1)}(x) g^{(k)}(x)+f^{(n-k)}(x) g^{(k+1)}(x)\right] \\
& =\sum_{k=0}^{n}\binom{n}{k} f^{(n+1-k)}(x) g^{(k)}(x)+\sum_{k=1}^{n+1}\binom{n}{k-1} f^{(n+1-k)}(x) g^{(k)}(x) \\
& =f^{(n+1)}(x) g(x)+\sum_{k=1}^{n}\left[\binom{n}{k}+\binom{n}{k-1}\right] f^{(n+1-k)}(x) g^{(k)}(x)+f^{(0)}(x) g^{(n+1)}(x) \\
& =f^{(n+1)}(x) g(x)+\sum_{k=1}^{n}\binom{n+1}{k} f^{(n+1-k)}(x) g^{(k)}(x)+f^{(0)}(x) g^{(n+1)}(x) \\
& =\sum_{k=0}^{n+1}\binom{n+1}{k} f^{(n+1-k)}(x) g^{(k)}(x),
\end{aligned}
$$

using Pascal's recurrence for binomial coefficients in the penultimate line. This establishes the inductive step, so that the given formula holds for all $n \geq 0$.
(ii) Let $h(x)=e^{-1 / x^{2}}$ for $x \neq 0$ and $h(0)=0$. Show that $h^{(n)}(0)=0$ for all $n \in \mathbb{N}$. Conclude that the remainder term in Taylor's Theorem for $x_{0}=0$ does not converge to 0 as $n \rightarrow \infty$ for $x \neq 0$. [By L'Hospital's Rule, $\lim _{x \rightarrow 0} h(x) / x^{k}=0$ for any $k \in \mathbb{N}$. Use (i) to calculate $h^{(n)}(x)$ for $x \neq 0$.]
Let $h(x)=e^{-x^{-2}}$ for $x \neq 0$ and $h(0)=0$.
First we use L'Hospital's Rule to show that $\lim _{x \rightarrow 0} \frac{h(x)}{x^{m}}=0$ for any $m \in \mathbb{N}$. Using the ∞ / ∞ form of L'Hospital's Rule, and the general fact that the derivative of $e^{f(x)}$ is $f^{\prime}(x) e^{f(x)}$,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{h(x)}{x^{m}} & =\lim _{x \rightarrow 0} \frac{x^{-m}}{e^{x^{-2}}} \\
& =\lim _{y \rightarrow \infty} \frac{y^{m}}{e^{y^{2}}} \\
& =\lim _{y \rightarrow \infty} \frac{m y^{m-1}}{2 y e^{y^{2}}} \\
& =\frac{m}{2} \lim _{y \rightarrow \infty} \frac{y^{m-2}}{e^{y^{2}}} \\
& = \begin{cases}\frac{m(m-2) \cdots 2}{2^{m / 2}} \lim _{y \rightarrow \infty} \frac{1}{e^{y^{2}}} & m \text { even } \\
\frac{m(m-2) \cdots 1}{2^{\frac{m+1}{2}}} \lim _{y \rightarrow \infty} \frac{y^{-1}}{e^{y^{2}}} & m \text { odd }\end{cases} \\
& =0
\end{aligned}
$$

We then have

$$
\begin{aligned}
h^{\prime}(0) & =\lim _{x \rightarrow 0} \frac{h(x)-h(0)}{x-0} \\
& =\lim _{x \rightarrow 0} \frac{h(x)}{x} \\
& =0
\end{aligned}
$$

by the above with $m=1$.
For $x \neq 0$, we have $h^{\prime}(x)=2 x^{-3} h(x)$ and, by the product rule for derivatives,

$$
\begin{aligned}
h^{\prime \prime}(x) & =-6 x^{-4} h(x)+2 x^{-3} h^{\prime}(x) \\
& =-6 x^{-4} h(x)+4 x^{-6} h(x)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
h^{\prime \prime}(0) & =\lim _{x \rightarrow 0} \frac{h^{\prime}(x)-h^{\prime}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{h^{\prime}(x)}{x} \\
& =\lim _{x \rightarrow 0} \frac{2 x^{-3} h(x)}{x} \\
& =\lim _{x \rightarrow 0} 2 \frac{h(x)}{x^{4}}=0
\end{aligned}
$$

Setting $f(x)=2 x^{-3}$ and $g(x)=h(x)$ in (i), for $n \geq 1$

$$
\begin{equation*}
h^{(n+1)}(x)=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(n-k+2)!x^{k-n-3} h^{(k)}(x) \tag{1}
\end{equation*}
$$

where we have used the result, easily proved by induction, that

$$
\left(2 x^{-3}\right)^{(j)}=(-1)^{j}(j+2)!x^{-3-j}
$$

with $j=n-k$.

Assuming inductively for $0 \leq k \leq n$ that $h^{(k)}(x)=q_{k}\left(x^{-1}\right) h(x)$ for some polynomial q_{k}, which is true for $k=0,1,2$ as we have seen, equation (1) for $h^{(n+1)}(x)$ yields the inductive step showing that $h^{(n+1)}(x)=q_{n+1}\left(x^{-1}\right) h(x)$ for a polynomial q_{n+1}.
Since

$$
h^{(n+1)}(0)=\lim _{x \rightarrow 0} \frac{h^{(n)}(x)}{x}=\lim _{x \rightarrow 0} x^{-1} q_{n}\left(x^{-1}\right) h(x)=0
$$

by the fact that $\lim _{x \rightarrow 0} x^{-m} h(x)=0$ for all $m \in \mathbb{N}$, as proved above, it follows that $h^{(n)}(x)=0$ for all n.

Thus the Taylor polynomial for $h(x)$ att $x=0$ is identically zero. The remainder term is then $h(x)$ itself, equal to $h^{(n+1)}(c) /(n+1)$! for some $c \in(0, x)$. It cannot converge to 0 as $n \rightarrow \infty$ as it is constantly equal to $h(x)=e^{-x^{-2}} \neq 0$.

