Mathematical Analysis I

Exercise sheet 11

Solutions

7 January 2016

References: Abbott 6.6. Bartle & Sherbert 6.4

1. Let f:[a,b] — R be such that f and its derivatives f’, f”,..., f(™ are continuous on [a,b] and
that f(»t1) exists on (a,b).

(i)

(i)

Let xy € [a,b]. Show that the polynomial P, (x) defined by

) e . (1) (g
Po(z) = f(xo) + f(x0)(x — x0) + / ; 0) (x—20)% 4+ + fn('())(:zr — x0)"
has the property that P,g,k)(;(;o) = (k) (xg) for each k =0,1,...,n. [The polynomial P, is called

the nth Taylor polynomial for f at xg.]
The polynomial

()] )
i=0 ’

has kth derivative

~—

PP =Y 1 (i(f;;, (2 = 20)"™,

=
since (z — x0)* has kth derivative i(i — 1)---(i — k + 1)(x — z0)" ¥, using the chain rule for
derivatives and induction on k, and
ii—1)-(i—k+1) 1
il (i =k

Setting x = x¢ gives the result that
PP (z0) = ™ (x0)

since ( (]f)(’!)O =0 when i >k and (z — x0)" = 1.

Taylor’s Theorem with the Lagrange form for the remainder term states that, for any x € [a, ]
there is ¢ € (zg,x) such that

o L)
f(z) = Pa(z) + )
where P, is the nth Taylor polynomial for f at xy defined in (i). Find the Taylor polynomial
P, for e* at zg and show that the remainder term converges to 0 as n — oo for each fixed xg
and x. [Use the fact that if (ay,) is a sequence of positive reals such that lim a,11/a, exists and
is < 1 then lima,, = 0.]

Let f(z) = e®. Then f®*)(z) = €*, so that f*)(zy) = ¢ and e has nth Taylor polynomial at
T given by



(iii)

and the remainder term is given by

n
e’ _ € o n+1
gu””‘xo = @

where ¢ € (zo, ).

n+1

The sequence (ay,) of remainder terms, defined by a,, = (neTCI),(x —x0)""", has the property that

Ap+1 1
—T = —20) = 0 — 00.
o -y 2(:1: x0) as n — 0o

Hence (a,,) — 0 as n — oo (by the ratio test for sequences given in the hint).

Find the Taylor polynomial P, for f(x) = sinx at xp = 0 and prove that the remainder term
converges to 0 as n — oo for each 2. We have f'(x) = cosz, f"(z) = —sinz, f®(z) = —cosz
and f®)(z) = sinz = f(z). Thus, for k > 0,

sin x k=0 (mod 4)
£09() = COS.Z' k=1 (mod 4)
—sinz k=2 (mod 4)
—cosz k=3 (mod 4)

0 k=0 (mod4)
£0(0) = k=1 (mod 4)
0 k=2 (mod4)
-1 k=3 (mod4)
ie. -
0 E=0 (mod 2)
Hence the Taylor polynomial of f(z) =sinz at zp = 0 is given by
n—1
Po, = P, (
2n-1(2) = Py Z; 2 + 1

and the remainder by
1) si
sine — Py,—1(x) = ((;n)sllnc 2n
for odd 2n — 1, for some ¢ € (xg, x), and

(=1)"cosc oni

sinz — Py, (z) = Gn 1)l

for even 2n, for some ¢ € (xg, x).

Using the ratio test for sequences again as in (ii), both these remainder terms converge to 0
as n — oo. For example, in the first case the ratio of remainders is in absolute value equal
to W which converges to 0 as n — oo, from which we deduce so does the sequence

% 2n We conclude that the infinite series

i

o0
Z 2z+1

z:O

converges pointwise to sinx (i.e., for each 2 € R the series converges to a limit, and this limit is
sinz).



(iv) Find the nth Taylor polynomial for f(z) = (1 +2)™™ at xg = 0, where m is a positive integer.
We have f®)(z) = (=1)*m(m+1)--- (m+k—1)(142)"™ % so that the nth Taylor polynomial
of f(z) = (1+x)™™ at 0 is given by

Po(z) = Z (~1'mm+1) - (m+i—1)

i!

—Z <m+z—1>xi_

The Lagrange form of the remainder is

n

o= (M e = o (T a g

= /) n+1

for some ¢ € (0, ).

Ezercise: for which values of « does this remainder converge to 07

(i) Let f,g: [a,b] — R be n times differentiable on (a, ). Use induction to prove Leibnitz’s rule for
the nth derivative of a product

n

(‘]",{1)(”)(1?) = Z (Z)f“'Ll)(l‘)‘(/(/"‘)(lr).

k=0

for 2 € (a.b). The base case n = 0 holds since (8) =1 and fO(z) = f(x), 9" (z) = g(x). The
case n = 1 is the product rule for derivatives:

(f9)'(z) = f'(z)g(z) + f(2)d ().
Assume the truth of the statement for a given n. Then

(f9)" V() = [(f9)™]

- (kzzo (1) P <a:>>,

by induction hypothesis. By linearity of differentiation and applying the product rule for the
case n =1,

F"@) = 3 () [0 @ @) + 10D @)D )
k=0
n+1

S O e
= /D @) +Z[() (7)) + 1O gD

_ ) ) +Z("+ D) #0105 @)+ O

—fj( D)0 a)g ),

using Pascal’s recurrence for binomial coefficients in the penultimate line. This establishes the
inductive step, so that the given formula holds for all n > 0.



(i) Let h(z) = e /%" for & # 0 and h(0) = 0. Show that A (0) = 0 for all n € N. Conclude
that the remainder term in Taylor’s Theorem for zp = 0 does not converge to 0 as n — oo for
x # 0. [By L’Hospital’s Rule, lim,_o h(z)/xz* = 0 for any k € N. Use (i) to calculate h™ (z)
for x #0.]
Let h(z) = e~ for z # 0 and h(0) = 0.

First we use L’Hospital’s Rule to show that lim,_,q % = 0 for any m € N. Using the co/co

form of L’Hospital’s Rule, and the general fact that the derivative of ef () is I (x)ef (@)

. h(x) ooxTm
lim —= = lim —;
z—0 ™ z—0 eT

—5 meven

= N m(m—2)--1 . -1
% hmy*)oo 272 m odd

N v
=0
We then have
w10) = ti "
-t "

by the above with m = 1.
For z # 0, we have h'(z) = 227 3h(x) and, by the product rule for derivatives,

B (x) = =6z~ h(z) + 207 3K ()
= —62 *h(z) + 427 h(x)

Similarly,
/ ! /
z—0 x—0 z—0 T
3

— lim 2z °h(x)
z—0 €T

= lim 2% =0
z—0 €T

Setting f(z) = 2273 and g(z) = h(z) in (i), for n > 1
(n+1) ) = — (n _1\n—k n— 'l,k—n—3 (k) x
A (a) k}_j_()@( 1)k 4+ 2)laF A0 ), )

where we have used the result, easily proved by induction, that
(207 = (—1) (G + 2,

with j =n — k.



Assuming inductively for 0 < k < n that h*®)(2) = gx(z~)h(x) for some polynomial gz, which is
true for k = 0,1, 2 as we have seen, equation (1) for h"*+1(z) yields the inductive step showing
that A"t () = guy1(z~ V) A(z) for a polynomial gy, 1.

Since

R (z)
(n+1)(0) = 1 — Tim gl -1 _
h (0) il_r}r%) . ilir(l).%’ gn(z”)h(z) =0
by the fact that lim, oz~ ™h(z) = 0 for all m € N, as proved above, it follows that h(™ (z) = 0
for all n.

Thus the Taylor polynomial for h(z) att = 0 is identically zero. The remainder term is then
h(z) itself, equal to A"+ (¢)/(n + 1)! for some ¢ € (0,z). It cannot converge to 0 as n — co as
it is constantly equal to h(z) = e~ #£ 0.



