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7 January 2016

References: Abbott 6.6. Bartle & Sherbert 6.4

1. Let f : [a, b] → R be such that f and its derivatives f ′, f ′′, . . . , f (n) are continuous on [a, b] and
that f (n+1) exists on (a, b).

(i) Let x0 ∈ [a, b]. Show that the polynomial Pn(x) defined by

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n

has the property that P
(k)
n (x0) = f (k)(x0) for each k = 0, 1, . . . , n. [The polynomial Pn is called

the nth Taylor polynomial for f at x0.]

The polynomial

Pn(x) =

n∑
i=0

f (i)(x0)

i!
(x− x0)

i

has kth derivative

P (k)
n (x) =

n∑
i=k

f (i)(x0)

(i− k)!
(x− x0)

i−k,

since (x − x0)
i has kth derivative i(i − 1) · · · (i − k + 1)(x − x0)

i−k, using the chain rule for
derivatives and induction on k, and

i(i− 1) · · · (i− k + 1)

i!
=

1

(i− k)!
.

Setting x = x0 gives the result that

P (k)
n (x0) = f (k)(x0)

since f (i)(x0)
(i−k)! 0i−k = 0 when i > k and (x− x0)

0 = 1.

(ii) Taylor’s Theorem with the Lagrange form for the remainder term states that, for any x ∈ [a, b]
there is c ∈ (x0, x) such that

f(x) = Pn(x) +
f (n+1)(c)

(n + 1)!
(x− x0)

n+1,

where Pn is the nth Taylor polynomial for f at x0 defined in (i). Find the Taylor polynomial
Pn for ex at x0 and show that the remainder term converges to 0 as n → ∞ for each fixed x0
and x. [Use the fact that if (an) is a sequence of positive reals such that lim an+1/an exists and
is < 1 then lim an = 0.]

Let f(x) = ex. Then f (k)(x) = ex, so that f (k)(x0) = ex0 and ex has nth Taylor polynomial at
x0 given by

Pn(x) =
n∑

i=0

ex0

i!
(x− x0)

i
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and the remainder term is given by

ex −
n∑

i=0

ex0

i!
(x− x0)

i =
ec

(n + 1)!
(x− x0)

n+1,

where c ∈ (x0, x).

The sequence (an) of remainder terms, defined by an = ec

(n+1)!(x−x0)
n+1, has the property that

an+1

an
=

1

n + 2
(x− x0)→ 0 as n→∞.

Hence (an)→ 0 as n→∞ (by the ratio test for sequences given in the hint).

(iii) Find the Taylor polynomial Pn for f(x) = sinx at x0 = 0 and prove that the remainder term
converges to 0 as n → ∞ for each x. We have f ′(x) = cosx, f ′′(x) = − sinx, f (3)(x) = − cosx
and f (4)(x) = sinx = f(x). Thus, for k ≥ 0,

f (k)(x) =


sinx k ≡ 0 (mod 4)

cosx k ≡ 1 (mod 4)

− sinx k ≡ 2 (mod 4)

− cosx k ≡ 3 (mod 4)

where k ≡ r (mod 4) means that k leaves remainder r on division by 4. At x = 0,

f (k)(0) =


0 k ≡ 0 (mod 4)

1 k ≡ 1 (mod 4)

0 k ≡ 2 (mod 4)

−1 k ≡ 3 (mod 4)

i.e.

f (k)(0) =

{
(−1)

k−1
2 k ≡ 1 (mod 2)

0 k ≡ 0 (mod 2)

Hence the Taylor polynomial of f(x) = sinx at x0 = 0 is given by

P2n−1(x) = P2n(x) =
n−1∑
i=0

(−1)i

(2i + 1)!
xi,

and the remainder by

sinx− P2n−1(x) =
(−1)n sin c

(2n)!
x2n

for odd 2n− 1, for some c ∈ (x0, x), and

sinx− P2n(x) =
(−1)n cos c

(2n + 1)!
x2n+1

for even 2n, for some c ∈ (x0, x).

Using the ratio test for sequences again as in (ii), both these remainder terms converge to 0
as n → ∞. For example, in the first case the ratio of remainders is in absolute value equal
to |x|

(2n+1)(2n+2) , which converges to 0 as n → ∞, from which we deduce so does the sequence
(−1)n sin c

(2n)! x2n. We conclude that the infinite series

∞∑
i=0

(−1)i

(2i + 1)!
xi

converges pointwise to sinx (i.e., for each x ∈ R the series converges to a limit, and this limit is
sinx).
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(iv) Find the nth Taylor polynomial for f(x) = (1 + x)−m at x0 = 0, where m is a positive integer.

We have f (k)(x) = (−1)km(m+ 1) · · · (m+k−1)(1 +x)−m−k so that the nth Taylor polynomial
of f(x) = (1 + x)−m at 0 is given by

Pn(x) =

n∑
i=0

(−1)im(m + 1) · · · (m + i− 1)

i!
xi

=

n∑
i=0

(−1)i
(
m + i− 1

i

)
xi.

The Lagrange form of the remainder is

(1 + x)−m −
n∑

i=0

(−1)i
(
m + i− 1

i

)
xi = (−1)n+1

(
m + n

n + 1

)
(1 + c)−m−n−1

for some c ∈ (0, x).

Exercise: for which values of x does this remainder converge to 0?

2.

(i) Let f, g : [a, b]→ R be n times differentiable on (a, b). Use induction to prove Leibnitz’s rule for
the nth derivative of a product

(fg)(n)(x) =
n∑

k=0

(
n

k

)
f (n−k)(x)g(k)(x),

for x ∈ (a, b). The base case n = 0 holds since
(
0
0

)
= 1 and f (0)(x) = f(x), g(0)(x) = g(x). The

case n = 1 is the product rule for derivatives:

(fg)′(x) = f ′(x)g(x) + f(x)g′(x).

Assume the truth of the statement for a given n. Then

(fg)(n+1)(x) = [(fg)(n)]′

=

(
n∑

k=0

(
n

k

)
f (n−k)(x)g(k)(x)

)′
by induction hypothesis. By linearity of differentiation and applying the product rule for the
case n = 1,

(fg)(n+1)(x) =

n∑
k=0

(
n

k

)[
f (n−k+1)(x)g(k)(x) + f (n−k)(x)g(k+1)(x)

]
=

n∑
k=0

(
n

k

)
f (n+1−k)(x)g(k)(x) +

n+1∑
k=1

(
n

k − 1

)
f (n+1−k)(x)g(k)(x)

= f (n+1)(x)g(x) +
n∑

k=1

[(
n

k

)
+

(
n

k − 1

)]
f (n+1−k)(x)g(k)(x) + f (0)(x)g(n+1)(x)

= f (n+1)(x)g(x) +
n∑

k=1

(
n + 1

k

)
f (n+1−k)(x)g(k)(x) + f (0)(x)g(n+1)(x)

=

n+1∑
k=0

(
n + 1

k

)
f (n+1−k)(x)g(k)(x),

using Pascal’s recurrence for binomial coefficients in the penultimate line. This establishes the
inductive step, so that the given formula holds for all n ≥ 0.
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(ii) Let h(x) = e−1/x
2

for x 6= 0 and h(0) = 0. Show that h(n)(0) = 0 for all n ∈ N. Conclude
that the remainder term in Taylor’s Theorem for x0 = 0 does not converge to 0 as n → ∞ for
x 6= 0. [By L’Hospital’s Rule, limx→0 h(x)/xk = 0 for any k ∈ N. Use (i) to calculate h(n)(x)
for x 6= 0.]

Let h(x) = e−x
−2

for x 6= 0 and h(0) = 0.

First we use L’Hospital’s Rule to show that limx→0
h(x)
xm = 0 for any m ∈ N. Using the ∞/∞

form of L’Hospital’s Rule, and the general fact that the derivative of ef(x) is f ′(x)ef(x),

lim
x→0

h(x)

xm
= lim

x→0

x−m

ex−2

= lim
y→∞

ym

ey2

= lim
y→∞

mym−1

2yey2

=
m

2
lim
y→∞

ym−2

ey2

=


m(m−2)···2

2m/2 limy→∞
1

ey2
m even

m(m−2)···1
2
m+1

2
limy→∞

y−1

ey2
m odd

= 0

We then have

h′(0) = lim
x→0

h(x)− h(0)

x− 0

= lim
x→0

h(x)

x

= 0

by the above with m = 1.

For x 6= 0, we have h′(x) = 2x−3h(x) and, by the product rule for derivatives,

h′′(x) = −6x−4h(x) + 2x−3h′(x)

= −6x−4h(x) + 4x−6h(x)

Similarly,

h′′(0) = lim
x→0

h′(x)− h′(0)

x− 0
= lim

x→0

h′(x)

x

= lim
x→0

2x−3h(x)

x

= lim
x→0

2
h(x)

x4
= 0

Setting f(x) = 2x−3 and g(x) = h(x) in (i), for n ≥ 1

h(n+1)(x) =

n∑
k=0

(
n

k

)
(−1)n−k(n− k + 2)!xk−n−3h(k)(x), (1)

where we have used the result, easily proved by induction, that

(2x−3)(j) = (−1)j(j + 2)!x−3−j ,

with j = n− k.
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Assuming inductively for 0 ≤ k ≤ n that h(k)(x) = qk(x−1)h(x) for some polynomial qk, which is
true for k = 0, 1, 2 as we have seen, equation (1) for h(n+1)(x) yields the inductive step showing
that h(n+1)(x) = qn+1(x

−1)h(x) for a polynomial qn+1.

Since

h(n+1)(0) = lim
x→0

h(n)(x)

x
= lim

x→0
x−1qn(x−1)h(x) = 0

by the fact that limx→0 x
−mh(x) = 0 for all m ∈ N, as proved above, it follows that h(n)(x) = 0

for all n.

Thus the Taylor polynomial for h(x) att x = 0 is identically zero. The remainder term is then
h(x) itself, equal to h(n+1)(c)/(n + 1)! for some c ∈ (0, x). It cannot converge to 0 as n→∞ as
it is constantly equal to h(x) = e−x

−2 6= 0.
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