Mathematical Analysis I

Exercise sheet 11

7 January 2016

References: Abbott 6.6. Bartle \& Sherbert 6.4

1. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that f and its derivatives $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are continuous on $[a, b]$ and that $f^{(n+1)}$ exists on (a, b).
(i) Let $x_{0} \in[a, b]$. Show that the polynomial $P_{n}(x)$ defined by

$$
P_{n}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

has the property that $P_{n}^{(k)}\left(x_{0}\right)=f^{(k)}\left(x_{0}\right)$ for each $k=0,1, \ldots, n$. [The polynomial P_{n} is called the nth Taylor polynomial for f at x_{0}.]
(ii) Taylor's Theorem with the Lagrange form for the remainder term states that, for any $x \in[a, b]$ there is $c \in\left(x_{0}, x\right)$ such that

$$
f(x)=P_{n}(x)+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

where P_{n} is the nth Taylor polynomial for f at x_{0} defined in (i). Find the Taylor polynomial P_{n} for e^{x} at x_{0} and show that the remainder term converges to 0 as $n \rightarrow \infty$ for each fixed x_{0} and x. [Use the fact that if $\left(a_{n}\right)$ is a sequence of positive reals such that $\lim a_{n+1} / a_{n}$ exists and is <1 then $\lim a_{n}=0$.]
(iii) Find the Taylor polynomial P_{n} for $f(x)=\sin x$ at $x_{0}=0$ and prove that the remainder term converges to 0 as $n \rightarrow \infty$ for each x.
(iv) Find the nth Taylor polynomial for $f(x)=(1+x)^{-m}$ at $x_{0}=0$, where m is a positive integer.
2.
(i) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be n times differentiable on (a, b). Use induction to prove Leibnitz's rule for the nth derivative of a product

$$
(f g)^{(n)}(x)=\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)} g^{(k)}(x)
$$

for $x \in(a, b)$.
(ii) Let $h(x)=e^{-1 / x^{2}}$ for $x \neq 0$ and $h(0)=0$. Show that $h^{(n)}(0)=0$ for all $n \in \mathbb{N}$. Conclude that the remainder term in Taylor's Theorem for $x_{0}=0$ does not converge to 0 as $n \rightarrow \infty$ for $x \neq 0$. [By L'Hospital's Rule, $\lim _{x \rightarrow 0} h(x) / x^{k}=0$ for any $k \in \mathbb{N}$. Use (i) to calculate $h^{(n)}(x)$ for $x \neq 0$.]

