Mathematical Analysis I

Exercise sheet 9

Selected solutions
17 December 2015

References: Abbott 5.2, 5.3, Bartle \& Sherbert 6.2, 6.3

4.

(i) Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable on (a, b) with $f^{\prime}(x) \neq 1$. Suppose $f(x)=x$ and $f(y)=y$ for some $x, y \in[a, b]$. By the Mean Value Theorem on the interval $[x, y]$ we have

$$
1=\frac{x-y}{x-y}=\frac{f(x)-f(y)}{x-y}=f^{\prime}(c)
$$

for some $c \in(x, y)$. This contradicts the fact that $f^{\prime}(c) \neq 1$ for $c \in(a, b)$. Hence there can be no $x \neq y$ that are both fixed points of f.
(ii) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and differentiable on $[a, b]$, with continuous derivative f^{\prime} : $[a, b] \rightarrow \mathbb{R}$ and take $x<y \in[a, b]$. By the Mean Value Theorem

$$
\frac{f(x)-f(y)}{x-y}=f^{\prime}(c)
$$

for some $c \in(x, y)$. Since f^{\prime} is continuous on $[a, b]$, it is bounded and attains mininimum and maximum values (i.e., the image of $[a, b]$ under f^{\prime} is a closed bounded interval). Hence there is a constant $M>0$ such that $\left|f^{\prime}(x)\right| \leq M$ for all $x \in[a, b]$. Consequently, for any choice of $x, y \in[a, b]$,

$$
\left|\frac{f(x)-f(y)}{x-y}\right| \leq M
$$

which is to say that f is Lipschitz on the interval $[a, b]$.

