Mathematical Analysis I

Exercise sheet 10

17 December 2015

References: Abbott 5.2, 5.3. Bartle \& Sherbert 6.2, 6.3

1. State the Mean Value Theorem.

(i) By applying the Mean Value Theorem to the function $f(x)=\ln (1+x)-x$ on the interval $[0, x]$ prove that $\ln (1+x)<x$ for $x>0$. In a similar way, prove that $x-\frac{x^{2}}{2}<\ln (1+x)$ when $x>0$.

Prove the following inequalities by applying the Mean Value Theorem to a suitably defined function and interval:
(ii) $-x \leq \sin x \leq x$ for $x \geq 0$,
(iii) $x<\tan x$ for $0<x<\frac{\pi}{2}$,
(iv) $\cos x>1-\frac{x^{2}}{2}$ for $x>0$,
(v) $e^{x}>1+x+\frac{x^{2}}{2}$ for $x>0$,
(vi) $e^{x}>1+x+\frac{x^{2}}{2}+\cdots+\frac{x^{n}}{n!}$ for $x>0$. [For parts (v)-(vi) use only that e^{x} has derivative e^{x} (i.e. do not assume the series expansion for $\left.\exp (x)=e^{x}\right)$.]
2. Let $a<b \in \mathbb{R}$. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and differentiable on (a, b).
(i) Show that if $f^{\prime}(x)=0$ for all $x \in(a, b)$ then f is constant on $[a, b]$.
(ii) Show that if $f^{\prime}(x)=A$ for all $x \in(a, b)$ then $f(x)=A x+B$ for some constants A, B. [Consider the function $g(x)=f(x)-A x$.]
(iii) Deduce from (i) and (ii) that if $f:[a, b] \rightarrow \mathbb{R}$ is twice differentiable and $f^{\prime \prime}(x)=0$ on (a, b) then $f(x)$ is a linear function (i.e., $f(x)=A x+B$ for constants A, B.)
(iv) Let n be a positive integer. Prove that if f is n times differentiable and $f^{(n)}(x)=0$ on (a, b), then $f(x)$ is a polynomial of degree $n-1$. [Previous parts show this is true for $n=1,2$. Induction...]
3. Use the appropriate version of L'Hospital's Rule to evaluate the following limits:
(i) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$,
(ii) $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$,
(iii) $\lim _{x \rightarrow \infty} e^{-x} x^{n}$ (for any fixed positive integer n)
(iv) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$.
4.
(i) A fixed point of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a value x where $f(x)=x$. Show that if f is differentiable on an interval with $f^{\prime}(x) \neq 1$ then f can have at most one fixed point.
(ii) A function $f: A \rightarrow \mathbb{R}$ is Lipschitz on A if there exists an $M>0$ such that

$$
\left|\frac{f(x)-f(y)}{x-y}\right| \leq M
$$

for all $x, y \in A$. [There is a uniform bound M on the magnitude of the slopes of lines drawn through any two points on the graph of f.]
Show that if f is differentiable on a closed interval $[a, b]$ and if f^{\prime} is continuous on $[a, b]$, then f is Lipschitz on $[a, b]$.
(iii) A function $f:[a, b] \rightarrow \mathbb{R}$ is contractive if there is a constant $0<C<1$ such that

$$
|f(x)-f(y)| \leq C|x-y|
$$

for all $x, y \in[a, b]$. [Recall from Sheet 8, question 6, that a contractive function is continuous.]
Show that if f is continuously differentiable (i.e., f^{\prime} is continuous) and satisfies $\left|f^{\prime}(x)\right|<1$ on $[a, b]$ then f is contractive.

