Mathematical Analysis I

Exercise sheet 1

$8 \ {\rm October} \ 2015$

1. Express each of the following statements formally in terms of \forall , \exists , \neg , \land , \lor , \Rightarrow , \Leftrightarrow , as appropriate, defining the domain of variables and any relational symbols you require. Write too the formulation for the negation of each statement, and, finally, translate this negation into a natural English sentence.

- (i) If a number is both even and odd then it is equal to 42.
- (ii) Between any two rationals there lies another rational.
- (iii) The town barber is a man who shaves all those, and only those, men in town who do not shave themselves.

2.

(i) Prove *De Morgan's laws* for sets X and $A, B \subseteq X$:

$$X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$$
 and $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$.

Your proof for each should come in two parts, for example in the first showing that $X \setminus (A \cup B) \subseteq (X \setminus A) \cap (X \setminus B)$ and $X \setminus (A \cup B) \supseteq (X \setminus A) \cap (X \setminus B)$ in order to establish the given equality.

(ii) Let A and B be finite sets. Show that $A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$. Deduce that $|A| + |B| = |A \cup B| + |A \cap B|$.

3. For a function $f: X \to Y$ and $A \subseteq X$ we define $f(A) = \{f(x) : x \in A\}$. Thus f(X) is the range of f with domain X.

(i) Let $A = \{x \in \mathbb{R} : x \neq 1\}$ and define f(x) = 2x/(x-1) for all $x \in A$.

Prove that f is injective and determine the range of f. Define the inverse function f^{-1} .

(ii) Show that if $f : X \to Y$ and $A, B \subseteq X$ then $f(A \cup B) = f(A) \cup f(B)$ and $f(A \cap B) \subseteq f(A) \cap f(B)$. [ctd. overleaf] (iii) Let $f(x) = x^2$ for $x \in \mathbb{R}$ and $A = \{x \in \mathbb{R} : -1 \le x \le 0\}$ and $B = \{x \in \mathbb{R} : 0 \le x \le 1\}$. Show that $A \cap B = \{0\}$ and $f(A \cap B) = \{0\}$, while $f(A) = f(B) = \{y \in \mathbb{R} : 0 \le y \le 1\}$. Hence $f(A \cap B)$ is a proper subset of $f(A) \cap f(B)$. Write down the sets $A \setminus B$ and $f(A) \setminus f(B)$ and show that it is not true that $f(A \setminus B) \subseteq f(A) \setminus f(B)$.

4. Which of the following relations on \mathbb{N} are reflexive, which are symmetric, which are transitive?

- (i) the relation a|b (read as 'a divides b');
- (ii) the relation $a \not\mid b$ (does not divide);
- (iii) for a fixed $m \in \mathbb{N}$, a, b are related if a and b leave the same remainder after division by m.

Now suppose that X is a nonempty set and f a function with domain X. Define a relation on X by declaring x and y to be related if f(x) = f(y). Show this defines an equivalence relation. What are its equivalence classes?

5. Prove that \sqrt{p} is irrational when p is prime. (You may use the fact that when p is prime, it is the case that if p divides ab then either p divides a or p divides b.) More generally, can you say for which $n \in \mathbb{N}$ is \sqrt{n} irrational?

6. Two sets A and B are equinumerous if there is a bijection $f : A \to B$. Show that the relation of being equinumerous is an equivalence relation.

- (i) For $a, b \in \mathbb{R}$ with a < b give an explicit bijection from $A = \{x : a < x < b\}$ onto $B = \{y : 0 < y < 1\}$. Show that $\{x \in \mathbb{R} : x > 0\}$ is equinumerous with \mathbb{R} , and, finally, deduce that the set A is equinumerous with \mathbb{R} .
- (ii) A real number is *algebraic* if it is a solution of an equation of the form

$$a_0 + a_1 x + a_2 x^2 \dots + a_n x^n = 0,$$

for some $n \in \mathbb{N}$ and $a_0, a_1, a_2, \ldots, a_n \in \mathbb{Z}$.

Show that the set of algebraic numbers is equinumerous with \mathbb{N} . (You may assume the fact that a set X is equinumerous with \mathbb{N} if and only if there is a surjection from \mathbb{N} onto X. Start with the fact that \mathbb{Z} is equinumerous with \mathbb{N} and go on to establish that there is a surjection from \mathbb{N} onto the set of algebraic numbers.)