Mathematical Analysis I
 Exercise sheet 1

8 October 2015

1. Express each of the following statements formally in terms of $\forall, \exists, \neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$, as appropriate, defining the domain of variables and any relational symbols you require. Write too the formulation for the negation of each statement, and, finally, translate this negation into a natural English sentence.
(i) If a number is both even and odd then it is equal to 42 .
(ii) Between any two rationals there lies another rational.
(iii) The town barber is a man who shaves all those, and only those, men in town who do not shave themselves.
2.

(i) Prove De Morgan's laws for sets X and $A, B \subseteq X$:

$$
X \backslash(A \cup B)=(X \backslash A) \cap(X \backslash B) \quad \text { and } \quad X \backslash(A \cap B)=(X \backslash A) \cup(X \backslash B) .
$$

Your proof for each should come in two parts, for example in the first showing that $X \backslash(A \cup B) \subseteq(X \backslash A) \cap(X \backslash B)$ and $X \backslash(A \cup B) \supseteq(X \backslash A) \cap(X \backslash B)$ in order to establish the given equality.
(ii) Let A and B be finite sets. Show that $A \cup B=(A \backslash B) \cup(A \cap B) \cup(B \backslash A)$. Deduce that $|A|+|B|=|A \cup B|+|A \cap B|$.
3. For a function $f: X \rightarrow Y$ and $A \subseteq X$ we define $f(A)=\{f(x): x \in A\}$. Thus $f(X)$ is the range of f with domain X.
(i) Let $A=\{x \in \mathbb{R}: x \neq 1\}$ and define $f(x)=2 x /(x-1)$ for all $x \in A$.

Prove that f is injective and determine the range of f. Define the inverse function f^{-1}.
(ii) Show that if $f: X \rightarrow Y$ and $A, B \subseteq X$ then $f(A \cup B)=f(A) \cup f(B)$ and $f(A \cap B) \subseteq f(A) \cap f(B)$.
(iii) Let $f(x)=x^{2}$ for $x \in \mathbb{R}$ and $A=\{x \in \mathbb{R}:-1 \leq x \leq 0\}$ and $B=\{x \in \mathbb{R}: 0 \leq$ $x \leq 1\}$. Show that $A \cap B=\{0\}$ and $f(A \cap B)=\{0\}$, while $f(A)=f(B)=\{y \in$ $\mathbb{R}: 0 \leq y \leq 1\}$. Hence $f(A \cap B)$ is a proper subset of $f(A) \cap f(B)$.
Write down the sets $A \backslash B$ and $f(A) \backslash f(B)$ and show that it is not true that $f(A \backslash B) \subseteq f(A) \backslash f(B)$.
4. Which of the following relations on \mathbb{N} are reflexive, which are symmetric, which are transitive?
(i) the relation $a \mid b($ read as ' a divides b ');
(ii) the relation $a \nless b$ (does not divide);
(iii) for a fixed $m \in \mathbb{N}, a, b$ are related if a and b leave the same remainder after division by m.

Now suppose that X is a nonempty set and f a function with domain X. Define a relation on X by declaring x and y to be related if $f(x)=f(y)$. Show this defines an equivalence relation. What are its equivalence classes?
5. Prove that \sqrt{p} is irrational when p is prime. (You may use the fact that when p is prime, it is the case that if p divides $a b$ then either p divides a or p divides b.) More generally, can you say for which $n \in \mathbb{N}$ is \sqrt{n} irrational?
6. Two sets A and B are equinumerous if there is a bijection $f: A \rightarrow B$. Show that the relation of being equinumerous is an equivalence relation.
(i) For $a, b \in \mathbb{R}$ with $a<b$ give an explicit bijection from $A=\{x: a<x<b\}$ onto $B=\{y: 0<y<1\}$. Show that $\{x \in \mathbb{R}: x>0\}$ is equinumerous with \mathbb{R}, and, finally, deduce that the set A is equinumerous with \mathbb{R}.
(ii) A real number is algebraic if it is a solution of an equation of the form

$$
a_{0}+a_{1} x+a_{2} x^{2} \cdots+a_{n} x^{n}=0
$$

for some $n \in \mathbb{N}$ and $a_{0}, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$.
Show that the set of algebraic numbers is equinumerous with \mathbb{N}. (You may assume the fact that a set X is equinumerous with \mathbb{N} if and only if there is a surjection from \mathbb{N} onto X. Start with the fact that \mathbb{Z} is equinumerous with \mathbb{N} and go on to establish that there is a surjection from \mathbb{N} onto the set of algebraic numbers.)

