Úlohy ke cvičení

Úloha 1: Determine, whether the following sets of real functions form a subspace of the vector space of all real functions:

- The polynomials of degree at most 7,
- the polynomials f of degree at most 7 satisfying that $f(0)=3$,
- the polynomials of degree at most 7 satisfying that -5 and 2 are among their roots,
- the monotone functions,
- the piecewise linear continuous functions.

Úloha 2: Let u, v, w be linear independent vectors in a vector space V over the field \mathbb{R}. Decide, whether the following sets of vectors are linearly independent or not.
a) $\{u+v, u-v, u+w, u-w\}$.
b) $\{u+v, u+w, v+w\}$.

Úloha 3: Decide, whether the following set of vectors is independent in the arithmetic vector spaces $\mathbb{R}^{4}, \mathbb{Z}_{3}^{4}$ and \mathbb{Z}_{5}^{4}.
If not, find an expression of some vector as a linear combination of the others.
a) $X_{3}=\left\{(1,0,2,0)^{T},(2,1,0,2)^{T},(0,2,2,1)^{T},(2,2,1,1)^{T}\right\}$.

Úloha 4: Let V be a vector space and $X \subseteq Y \subseteq V$. Decide, which of the following claims are valid or not:
a) The se X is not independent, while the set Y is independent.
b) If the set X is independent, so is the set Y.
c) If the set Y is independent, o is the set X.

