Úlohy ke cvičení

Úloha 1: In the field \mathbb{Z}_{5}, solve the matrix equation

$$
\left(\begin{array}{llllll}
1 & 4 & 2 & 2 & 2 & 3 \\
4 & 2 & 0 & 0 & 4 & 2 \\
4 & 2 & 0 & 1 & 1 & 1 \\
0 & 2 & 4 & 0 & 4 & 4 \\
3 & 0 & 2 & 2 & 4 & 4
\end{array}\right) \mathbf{X}=\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 2 & 3 \\
0 & 3 & 4 \\
0 & 0 & 2 \\
0 & 1 & 4
\end{array}\right)
$$

Verify the result. You may use Sage, but then provide the commands and intermediate results.
$(\mathbf{A} \mid \mathbf{B})=\left(\begin{array}{llllll|lll}1 & 4 & 2 & 2 & 2 & 3 \\ 4 & 2 & 0 & 0 & 4 & 2 \\ 4 & 2 & 0 & 1 & 1 & 1 \\ 0 & 2 & 4 & 0 & 4 & 4 \\ 3 & 0 & 2 & 2 & 4 & 4 & \left\lvert\, \begin{array}{ll}1 & 0 \\ 3 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right. & 4\end{array}\right) \sim \sim\left(\begin{array}{llllll|llll}1 & 0 & 4 & 0 & 0 & 2 & 2 & 3 & 4 \\ 0 & 1 & 2 & 0 & 2 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 & 4 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
Hence $\mathbf{X}=\left(\begin{array}{ccc}2+p_{1}+3 p_{3} & 3+q_{1}+3 q_{3} & 4+r_{1}+3 r_{3} \\ 3 p_{1}+3 p_{2}+3 p_{3} & 3 q_{1}+3 q_{2}+3 q_{3} & 1+3 r_{1}+3 r_{2}+3 r_{3} \\ p_{1} & q_{1} & r_{1} \\ 2+p_{3}+3 p_{2} & 1+q_{3}+3 q_{2} & 1+r_{3}+3 r_{2} \\ p_{2} & q_{2} & r_{2} \\ p_{3} & q_{3} & r_{3}\end{array}\right)$

Úloha 2: In the vector space \mathbb{R}^{4} over the field \mathbb{R} find the linear combination of vectors $(-5,5,1,-1)^{T}$, $(2,-5,0,2)^{T},(3,2,0,-2)^{T}$ a $(2,-3,1,1)^{T}$ which does lead to vector $(-7,12,2,-4)^{T}$. Is this linear combination unique?

It is possible to find coefficients of of the linear combination with use of a system of equations. We may obtain for example $(2,0,1,0)^{T}$ as a solution.

The system of equations does not have a unique solution, thus the linear combination is not unique. The general form of the solution is $(2,0,1,0)^{T}+p(-1,-2,-1,1)^{T}$.

Úloha 3: Let \mathbf{A} be a matrix of size $m \times n$ over a field \mathbb{K}. Show that $\operatorname{Ker}(\mathbf{A})$ forms a vector subspace in the arithmetic vector space \mathbb{K}^{n}.

Use the definition of a matrix kernel and show that the set is closed under summation and product with any element of the field \mathbb{K}.
Let $\mathbf{x}, \mathbf{x}^{\prime} \in \operatorname{Ker}(\mathbf{A})$, then from the definition $\mathbf{A} \mathbf{x}=\mathbf{A} \mathbf{x}^{\prime}=\mathbf{0}$, then also $\mathbf{A}\left(\mathbf{x}+\mathbf{x}^{\prime}\right)=\mathbf{A} \mathbf{x}+\mathbf{A} \mathbf{x}^{\prime}=\mathbf{0}+\mathbf{0}=\mathbf{0}$, and so $\mathbf{x}+\mathbf{x}^{\prime} \in \operatorname{Ker}(\mathbf{A})$.
Similarly let $\mathbf{x} \in \operatorname{Ker}(\mathbf{A})$ and $a \in \mathbb{K}$ then we compute $\mathbf{A}(a \mathbf{x})=a(\mathbf{A x})=a \mathbf{0}=\mathbf{0}$, and so $a \mathbf{x} \in \operatorname{Ker}(\mathbf{A})$.
Note that although there are three different multiplications in the first equation, it is possible to change the order in which the product with scalar will be done.

Úloha 4: Let \mathbf{D} be a square matrix over a field \mathbb{K}. Show that all the matrices which commute in matrix product with matrix \mathbf{D} form a vector space.

Show that it is a subspace of the vector space of all square matrices over the field \mathbb{K}.
All zero matrix commutes trivially with any matrix. Lets denote the set of all \mathbf{D}-commutable matrices as C.
Let $\mathbf{A}, \mathbf{B} \in C$, then $(\mathbf{A}+\mathbf{B}) \cdot \mathbf{D}=\mathbf{A D}+\mathbf{B D}=\mathbf{D} \mathbf{A}+\mathbf{D B}=\mathbf{D} \cdot(\mathbf{A}+\mathbf{B})$
Now let $\mathbf{A} \in C$ and $a \in \mathbb{K}$, then $(a \mathbf{A}) \cdot \mathbf{D}=a(\mathbf{A} \cdot \mathbf{D})=a(\mathbf{D} \cdot \mathbf{A})=\mathbf{D} \cdot(a \mathbf{A})$

