Úlohy ke cvičení

Úloha 1: In the field \mathbb{Z}_5 , solve the matrix equation

/1	4	2	2	2	3	$\mathbf{X} =$	/1	0	0)
4	2	0	0	4	2		3	2	3
4	2	0	1	1	1	$\mathbf{X} =$	0	3	4
0	2	4	0	4	4		0	0	2
$\sqrt{3}$	0	2	2	4	4)		0	1	4/

Verify the result. You may use Sage, but then provide the commands and intermediate results.

Úloha 2: In the vector space \mathbb{R}^4 over the field \mathbb{R} find the linear combination of vectors $(-5, 5, 1, -1)^T$, $(2, -5, 0, 2)^T$, $(3, 2, 0, -2)^T$ a $(2, -3, 1, 1)^T$ which does lead to vector $(-7, 12, 2, -4)^T$. Is this linear combination unique?

It is possible to find coefficients of of the linear combination with use of a system of equations. We may obtain for example $(2, 0, 1, 0)^T$ as a solution.

The system of equations does not have a unique solution, thus the linear combination is not unique. The general form of the solution is $(2, 0, 1, 0)^T + p(-1, -2, -1, 1)^T$.

Úloha 3: Let **A** be a matrix of size $m \times n$ over a field \mathbb{K} . Show that $Ker(\mathbf{A})$ forms a vector subspace in the arithmetic vector space \mathbb{K}^n .

Use the definition of a matrix kernel and show that the set is closed under summation and product with any element of the field \mathbb{K} .

Let $\mathbf{x}, \mathbf{x}' \in Ker(\mathbf{A})$, then from the definition $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}' = \mathbf{0}$, then also $\mathbf{A}(\mathbf{x} + \mathbf{x}') = \mathbf{A}\mathbf{x} + \mathbf{A}\mathbf{x}' = \mathbf{0} + \mathbf{0} = \mathbf{0}$, and so $\mathbf{x} + \mathbf{x}' \in Ker(\mathbf{A})$.

Similarly let $\mathbf{x} \in Ker(\mathbf{A})$ and $a \in \mathbb{K}$ then we compute $\mathbf{A}(a\mathbf{x}) = a(\mathbf{A}\mathbf{x}) = a\mathbf{0} = \mathbf{0}$, and so $a\mathbf{x} \in Ker(\mathbf{A})$.

Note that although there are three different multiplications in the first equation, it is possible to change the order in which the product with scalar will be done.

Úloha 4: Let \mathbf{D} be a square matrix over a field \mathbb{K} . Show that all the matrices which commute in matrix product with matrix \mathbf{D} form a vector space.

Show that it is a subspace of the vector space of all square matrices over the field $\mathbb{K}.$

All zero matrix commutes trivially with any matrix. Lets denote the set of all **D**-commutable matrices as C. Let $\mathbf{A}, \mathbf{B} \in C$, then $(\mathbf{A} + \mathbf{B}) \cdot \mathbf{D} = \mathbf{A}\mathbf{D} + \mathbf{B}\mathbf{D} = \mathbf{D}\mathbf{A} + \mathbf{D}\mathbf{B} = \mathbf{D} \cdot (\mathbf{A} + \mathbf{B})$

Now let $\mathbf{A} \in C$ and $a \in \mathbb{K}$, then $(a\mathbf{A}) \cdot \mathbf{D} = a(\mathbf{A} \cdot \mathbf{D}) = a(\mathbf{D} \cdot \mathbf{A}) = \mathbf{D} \cdot (a\mathbf{A})$