Úlohy ke cvičení

Úloha 1: In the field \mathbb{Z}_{5}, solve the matrix equation
$\left(\begin{array}{llllll}1 & 4 & 2 & 2 & 2 & 3 \\ 4 & 2 & 0 & 0 & 4 & 2 \\ 4 & 2 & 0 & 1 & 1 & 1 \\ 0 & 2 & 4 & 0 & 4 & 4 \\ 3 & 0 & 2 & 2 & 4 & 4\end{array}\right) \mathbf{X}=\left(\begin{array}{lll}1 & 0 & 0 \\ 3 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 0 & 2 \\ 0 & 1 & 4\end{array}\right)$
Verify the result. You may use Sage, but then provide the commands and intermediate results.

Úloha 2: In the vector space \mathbb{R}^{4} over the field \mathbb{R} find the linear combination of vectors $(-5,5,1,-1)^{T}$, $(2,-5,0,2)^{T},(3,2,0,-2)^{T}$ a $(2,-3,1,1)^{T}$ which does lead to vector $(-7,12,2,-4)^{T}$. Is this linear combination unique?

Úloha 3: Let \mathbf{A} be a matrix of size $m \times n$ over a field \mathbb{K}. Show that $\operatorname{Ker}(\mathbf{A})$ forms a vector subspace in the arithmetic vector space \mathbb{K}^{n}.

Úloha 4: Let \mathbf{D} be a square matrix over a field \mathbb{K}. Show that all the matrices which commute in matrix product with matrix \mathbf{D} form a vector space.

