Úlohy ke cvičení

Úloha 1: In the field \mathbb{Z}_5 , solve the matrix equation

1	$^{\prime}1$	4	2	2	2	3		/1	0	0)
l	4	2	0	0	4	2		3	2	3
I	4	2	0	1	1	1	$\mathbf{X} =$	0	3	4
l	0	2	4	0	4	4		0	0	2
(3	0	2	2	4	4)		0	1	4/

Verify the result. You may use Sage, but then provide the commands and intermediate results.

Úloha 2: In the vector space \mathbb{R}^4 over the field \mathbb{R} find the linear combination of vectors $(-5, 5, 1, -1)^T$, $(2, -5, 0, 2)^T$, $(3, 2, 0, -2)^T$ a $(2, -3, 1, 1)^T$ which does lead to vector $(-7, 12, 2, -4)^T$. Is this linear combination unique?

Úloha 3: Let **A** be a matrix of size $m \times n$ over a field \mathbb{K} . Show that $Ker(\mathbf{A})$ forms a vector subspace in the arithmetic vector space \mathbb{K}^n .

Úloha 4: Let **D** be a square matrix over a field \mathbb{K} . Show that all the matrices which commute in matrix product with matrix **D** form a vector space.