Linear Algebra I

Exercise sheet 6

16/ 22 November 2016

1. Determine the powers p^{10} and q^{99} for the permutations $p=(5,4,3,2,1,9,8,7,6)$ and $q=$ $(8,6,4,2,1,3,5,7,9)$
2. Solve the permutation equation

$$
p \circ x \circ q=\iota
$$

(ι stands for the identity permutation) for x when $p=(1,2,7,6,5,4,3,8,9)$ and $q=(1,3,5,7,9,8,6,4,2)$.
3. Determine the sign of the permutation $(1,4,7, \ldots, 3 n-2,2,5,8, \ldots, 3 n-1,3,6, \ldots, 3 n)$.
4. For a permutation p of $[n]$ let $I(p)=\{i, j \in[n]: i<j, p(i)>p(j)\}$ denote the set of inversions of p. The sign of p is defined by $\operatorname{sgn}(p)=(-1)^{|I(p)|}$.

Give four different arguments to explain why $\operatorname{sgn}\left(p^{-1}\right)=\operatorname{sgn}(p)$.
[For three of the arguments use different representations of a permutation: (1) by a bipartite graph in which arrows join i to $p(i)$ (the 2-line representation with arrows joining i in the top row to $p(i)$ in the bottom row), (2) by its cycle decomposition, and (3) as a product of transpositions. For the fourth, you may quote the identity $\operatorname{sgn}(p \circ q)=\operatorname{sgn}(p) \operatorname{sgn}(q)$ for permutations p and q - if feeling brave, try to prove this last identity too.]

