Úlohy ke cvičení

Úloha 1: Show that in each group holds: $\left(a^{-1}\right)^{-1}=a$.

Úloha 2: Show that in each group holds $(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.

Úloha 3: Determine graphs, cycles, a factorzation into transpositions, the number of inversions, the sign, and the inverse permutations for the following permutations: p, q and their compositions $q \circ p$ and $p \circ q$.
(Permutations are composed as mappings, i.e. $(q \circ p)(i)=q(p(i))$.)
a) $p=(1,2,7,6,5,4,3,8,9), q=(1,3,5,7,9,8,6,4,2)$.

Úloha 4: Find a permutation on 10 elements s.t. p^{i} is not the identity (i.e. $p^{i} \neq \imath$) for all $i=$ $1, \ldots, 29$.

Úloha 5: Show that every permutation on n elements can be decomposed into transpositions of form $(1, i)$ for $i \in\{2, \ldots, n\}$.

Determine a bound of the length of the resulting factorization.

