Linear Algebra I

Exercise sheet 4

1 November 2016
2.

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
a & 1 & 1 & 1 & 1 \\
1 & a & 1 & 1 & 1 \\
1 & 1 & a & 1 & 1 \\
1 & 1 & 1 & a & 1
\end{array}\right] \underset{\text { swap } \mathrm{r} 1 \text { and } \mathrm{r} 4}{\sim}\left[\begin{array}{cccc|c}
1 & 1 & 1 & a & 1 \\
1 & a & 1 & 1 & 1 \\
1 & 1 & a & 1 & 1 \\
a & 1 & 1 & 1 & 1
\end{array}\right]} \\
\\
\underset{\text { pivot c1 }}{\sim}\left[\begin{array}{ccccc|c}
1 & 1 & 1 & a & 1 \\
0 & a-1 & 0 & 1-a & 0 \\
0 & 0 & a-1 & 0 & 0 \\
0 & 1-a & 1-a & 1-a^{2} & 1-a
\end{array}\right] \\
\\
\underset{\mathrm{r} 4 \leftarrow \mathrm{r} 4+\mathrm{r} 2+\mathrm{r} 3}{\sim}\left[\begin{array}{ccccc|c}
1 & 1 & 1 & a & 1 \\
0 & a-1 & 0 & 1-a & 0 \\
0 & 0 & a-1 & 1-a & 0 \\
0 & 0 & 0 & 2-a-a^{2} & 1-a
\end{array}\right] \\
\\
=\left[\begin{array}{cccccc}
1 & 1 & 1 & a & 1 \\
0 & a-1 & 0 & 1-a & 0 \\
0 & 0 & a-1 & 1-a & 0 \\
0 & 0 & 0 & (1-a)(a+3) & 1-a
\end{array}\right]
\end{gathered}
$$

When $a=1$ the matrix is in echelon form as

$$
\left[\begin{array}{llll|l}
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and the solution set is $\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}+x_{2}+x_{3}+x_{4}=1\right\}$. Setting non-pivot variables x_{2}, x_{3}, x_{4} as free parameters $p, q, r \in \mathbb{R}$ this is to say

$$
\mathbf{x}=\left[\begin{array}{c}
1-p-q-r \\
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+p\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+q\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+r\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

When $a=-3$ the matrix takes the following echelon form:

$$
\left[\begin{array}{cccc|c}
1 & 1 & 1 & -3 & 1 \\
0 & -4 & 0 & 4 & 0 \\
0 & 0 & -4 & 4 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right]
$$

for which there is no solution since the last row is inconsistent (all zero coefficients, non-zero in last column).

Otherwise, for $a \neq 1,-3$ we may reduce the ecehon form by scaling rows to obtain

$$
\left[\begin{array}{cccc|c}
1 & 1 & 1 & a & 1 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & \frac{1}{a+3}
\end{array}\right]
$$

We can solve the system of linear equations represented by this matrix by back-substitution: $x_{4}=\frac{1}{a+3}, x_{3}=x_{4}=\frac{1}{a+3}, x_{2}=x_{4}=\frac{1}{a+3}$ and $x_{1}=1-\frac{1}{a+3}-\frac{1}{a+3}-\frac{a}{a+3}=\frac{1}{a+3}$. Alternatively, we can put the matrix in reduced row echelon form to read of the solution vector in the last column:

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
1 & 1 & 1 & a & 1 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & \frac{1}{a+3}
\end{array}\right] \underset{\mathrm{r} 3 \leftarrow \mathrm{r} 3+\mathrm{r} 4}{\sim}\left[\begin{array}{cccc|c}
1 & 1 & 1 & a & 1 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & \frac{1}{a+3} \\
0 & 0 & 0 & 1 & \frac{1}{a+3}
\end{array}\right]} \\
\underset{\mathrm{r} 2 \leftarrow \mathrm{r} 2+\mathrm{r} 4}{\sim}\left[\begin{array}{cccc|c}
1 & 1 & 1 & a & 1 \\
0 & 1 & 0 & 0 & \frac{1}{a+3} \\
0 & 0 & 1 & 0 & \frac{1}{a+3} \\
0 & 0 & 0 & 1 & \frac{1}{a+3}
\end{array}\right] \\
\underset{\mathrm{r} 1 \leftarrow \mathrm{r} 1-\mathrm{r} 2 \mathrm{r} 3-\mathrm{ar} 4}{\sim}\left[\left.\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
\hline 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 1 & 0
\end{array} \right\rvert\, \frac{1}{a+3}\right. \\
0
\end{gathered} 0
$$

from which there is the unique solution

$$
\mathbf{x}=\left[\begin{array}{c}
\frac{1}{a+3} \\
\frac{1}{a+3} \\
\frac{1}{a+3} \\
\frac{1}{a+3}
\end{array}\right]=\frac{1}{a+3}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

