Linear Algebra I Reduced row echelon form

Computer package problem

Using Sage or another computer program, compute the row reduced echelon form of each of the following matrices

Г с · Л	Г0 1	0]	$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	0 0	$\begin{bmatrix} 0\\ 8 \end{bmatrix}$	$\begin{array}{ccc} 1 & 0 \\ 0 & 2 \end{array}$	0 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0 10	1 0	0 2	0	0	0		
$\left[\begin{array}{cc} 0 & 1 \\ 2 & 0 \end{array}\right],$	$\begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$	$\begin{bmatrix} 2\\0 \end{bmatrix}$,	$\begin{bmatrix} 6 & 0 \\ 0 & 5 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & 3 \\ 4 & 0 \end{bmatrix},$		7 0 0 6 0 0	3 0 5	$\begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix},$	0 0 0	9 0 0 0	0 8 0 0	3 0 7 0	0 4 0 6	0 0 5 0	,	

Do you spot any pattern? Do you think it persists?

[Exercise from R. Allenby, *Linear Algebra*, Arnold, 1995]

The reduced row echelon form of these matrices are found to be

$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 & -\frac{1}{6} \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \frac{2}{3} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$],		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 1 0 0	0 0 0 0 1 0	0 0 0 0 0 1	
---	----	--	---	--	-----------------------	----------------------------	----------------------------	--

Let A_n denote the $n \times n$ matrix

0	1	0		0	0	1
2n-2	0	2		0	0	
0	•••	$n\!+\!2$	0	$n\!-\!2$	0	.
0	•••	0	$n\!+\!1$	0	$n\!-\!1$	
0	•••	0	0	n	0	

The sequence above is $A_2, A_3, A_4, A_5, A_6, \ldots$

It appears that the reduced row echelon form of A_n is the $n \times n$ identity matrix when n is even, and that when n = 2k + 1 is odd it takes the form

$$\begin{bmatrix} I_{2k} & \mathbf{x}_k \\ \hline \mathbf{0}^T & 0 \end{bmatrix}$$

where I_{2k} is the $2k \times 2k$ identity matrix \mathbf{x}_k is a certain $2k \times 1$ column vector and $\mathbf{0}^T$ the $1 \times 2k$ all-zero row vector.

To guess what \mathbf{x}_k is here, we use Sage to find that A_7, A_9 have reduced row echelon forms

	$\begin{bmatrix} 1 & 0 \end{bmatrix}$	$0 \ 0 \ 0$	0 0 0	$\left -\frac{1}{70} \right $
$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$	$\frac{1}{20}$] 0 1	0 0 0	0 0 0	0
0 1 0 0 0 0	$\begin{bmatrix} \overline{0} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$1 \ 0 \ 0$	0 0 0	$\frac{8}{70}$
0 0 1 0 0 0	$-\frac{6}{20}$ 0 0	$0 \ 1 \ 0$	0 0 0	0
0 0 0 1 0 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0 \ 0 \ 1$	0 0 0	$-\frac{28}{70}$
0 0 0 0 1 0	$\frac{15}{20}$ 0 0	0 0 0	$1 \ 0 \ 0$	0
0 0 0 0 0 1	$\overline{0}$ 0 0	0 0 0	$0 \ 1 \ 0$	$\frac{56}{70}$
	0 0	$0 \ 0 \ 0$	$0 \ 0 \ 1$	0
	0 0	0 0 0	0 0 0	0

Note that we have put the fractions with a common denominator in order to better be able to guess the pattern. We write A_3, A_5 in a similar form

					[1]	0	0	0	$ -\frac{1}{6} $	
ſ	1	0	$\frac{1}{2}$]	0	1	0	0	0	
	0	1	Ō	,	0	0	1	0	$\frac{4}{6}$.
	0	0	0		0	0	0	1	Ő	
					0	0	0	0	0	

The first thing to guess is the sequence of denominators 2, 6, 20, 70, ... of the fractions in the last column \mathbf{x}_k , for A_{2k+1} with $k = 1, 2, 3, 4, \ldots$

These appear to be the middle binomial coefficients $\binom{2k}{k}$. (We have $\binom{2}{1} = 2$, $\binom{4}{2} = 6$, $\binom{6}{3} = 20$, $\binom{8}{4} = 70$,)

Further, ignoring signs, the numerators of the non-zero fractions in the last column \mathbf{x}_k are the initial k binomial coefficients

$$\binom{2k}{0}, \binom{2k}{1}, \cdots, \binom{2k}{k-1}.$$

The signs of the fractions alternate, finishing with a positive entry. Thus our conjecture is that

$$\mathbf{x}_{k}^{T} = \begin{cases} \frac{1}{\binom{2k}{k}} \begin{bmatrix} -\binom{2k}{0} & 0 & \binom{2k}{1} & 0 & -\binom{2k}{2} & \cdots & 0 & \binom{2k}{k-1} & 0 \end{bmatrix} & k \text{ even} \\ \frac{1}{\binom{2k}{k}} \begin{bmatrix} \binom{2k}{0} & 0 & -\binom{2k}{1} & 0 & \binom{2k}{2} & \cdots & 0 & \binom{2k}{k-1} & 0 \end{bmatrix} & k \text{ odd} \end{cases}$$

More compactly, the *i*th entry of \mathbf{x}_k is equal to 0 when *i* is even and $(-1)^{j+k+1} \frac{\binom{2k}{j}}{\binom{2k}{k}}$ when i = 2j + 1 is odd.

To *prove* that this indeed gives the reduced row echelon form for the matrix A_n is another matter!

Alexander observed that the sum of the entries in the last column is equal to $\frac{1}{2}$. We verify that the sum of the entries in \mathbf{x}_k is equal to

$$(-1)^{k+1} \sum_{j=0}^{k-1} \frac{(-1)^j \binom{2k}{j}}{\binom{2k}{k}} = \frac{1}{2} \frac{(-1)^{k+1}}{\binom{2k}{k}} \sum_{j=0}^{2k} (-1)^j \binom{2k}{j} + \frac{1}{2\binom{2k}{k}} \binom{2k}{k}$$
$$= 0 + \frac{1}{2} = \frac{1}{2},$$

where we have used the identity $\sum_{i=0}^{n} (-1)^{i} {n \choose i} = 0$ (with n = 2k).