Linear Algebra I

Reduced row echelon form

Computer package problem

Using Sage or another computer program, compute the row reduced echelon form of each of the following matrices

$$
\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
4 & 0 & 2 \\
0 & 3 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
6 & 0 & 2 & 0 \\
0 & 5 & 0 & 3 \\
0 & 0 & 4 & 0
\end{array}\right], \quad\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
8 & 0 & 2 & 0 & 0 \\
0 & 7 & 0 & 3 & 0 \\
0 & 0 & 6 & 0 & 4 \\
0 & 0 & 0 & 5 & 0
\end{array}\right], \quad\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
10 & 0 & 2 & 0 & 0 & 0 \\
0 & 9 & 0 & 3 & 0 & 0 \\
0 & 0 & 8 & 0 & 4 & 0 \\
0 & 0 & 0 & 7 & 0 & 5 \\
0 & 0 & 0 & 0 & 6 & 0
\end{array}\right]
$$

Do you spot any pattern? Do you think it persists?
[Exercise from R. Allenby, Linear Algebra, Arnold, 1995]
The reduced row echelon form of these matrices are found to be

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{llllc}
1 & 0 & 0 & 0 & -\frac{1}{6} \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \frac{2}{3} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Let A_{n} denote the $n \times n$ matrix

$$
\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
2 n-2 & 0 & 2 & \cdots & 0 & 0 \\
\cdots & & \cdots & & \cdots & \\
0 & \cdots & n+2 & 0 & n-2 & 0 \\
0 & \cdots & 0 & n+1 & 0 & n-1 \\
0 & \cdots & 0 & 0 & n & 0
\end{array}\right]
$$

The sequence above is $A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, \ldots$
It appears that the reduced row echelon form of A_{n} is the $n \times n$ identity matrix when n is even, and that when $n=2 k+1$ is odd it takes the form

$$
\left[\begin{array}{c|c}
I_{2 k} & \mathbf{x}_{k} \\
\hline \mathbf{0}^{T} & 0
\end{array}\right]
$$

where $I_{2 k}$ is the $2 k \times 2 k$ identity matrix \mathbf{x}_{k} is a certain $2 k \times 1$ column vector and $\mathbf{0}^{T}$ the $1 \times 2 k$ all-zero row vector.

To guess what \mathbf{x}_{k} is here, we use Sage to find that A_{7}, A_{9} have reduced row echelon forms

$$
\left[\begin{array}{cccccc|c}
1 & 0 & 0 & 0 & 0 & 0 & \frac{1}{20} \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{6}{20} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & \frac{15}{20} \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccccccc|c}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{70} \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \frac{8}{70} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -\frac{28}{70} \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \frac{56}{70} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Note that we have put the fractions with a common denominator in order to better be able to guess the pattern. We write A_{3}, A_{5} in a similar form

$$
\left[\begin{array}{ll|l}
1 & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
\hline 0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{cccc|c}
1 & 0 & 0 & 0 & -\frac{1}{6} \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \frac{4}{6} \\
0 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The first thing to guess is the sequence of denominators $2,6,20,70, \ldots$ of the fractions in the last column \mathbf{x}_{k}, for $A_{2 k+1}$ with $k=1,2,3,4, \ldots$.

These appear to be the middle binomial coefficients $\binom{2 k}{k}$. (We have $\binom{2}{1}=2,\binom{4}{2}=6,\binom{6}{3}=$ $20,\binom{8}{4}=70, \ldots$.

Further, ignoring signs, the numerators of the non-zero fractions in the last column \mathbf{x}_{k} are the initial k binomial coefficients

$$
\binom{2 k}{0},\binom{2 k}{1}, \cdots,\binom{2 k}{k-1}
$$

The signs of the fractions alternate, finishing with a positive entry.
Thus our conjecture is that

$$
\mathbf{x}_{k}^{T}=\left\{\begin{array}{lllllllll}
\frac{1}{\binom{2 k}{k}}\left[\begin{array}{ccccc}
-\binom{2 k}{0} & 0 & \binom{2 k}{1} & 0 & -\binom{2 k}{2} \\
\cdots & 0 & \binom{2 k}{k-1} & 0
\end{array}\right] & k \text { even } \\
\frac{1}{\binom{2 k}{k}}\left[\begin{array}{ccccccc}
\binom{2 k}{0} & 0 & -\binom{2 k}{1} & 0 & \binom{2 k}{2} & \cdots & 0
\end{array}\binom{2 k}{k-1}\right. & 0
\end{array}\right] \quad k \text { odd }
$$

More compactly, the i th entry of \mathbf{x}_{k} is equal to 0 when i is even and $(-1)^{j+k+1} \frac{\binom{2 k}{j}}{\binom{2 k}{k}}$ when $i=2 j+1$ is odd.

To prove that this indeed gives the reduced row echelon form for the matrix A_{n} is another matter!

Alexander observed that the sum of the entries in the last column is equal to $\frac{1}{2}$. We verify that the sum of the entries in \mathbf{x}_{k} is equal to

$$
\begin{aligned}
(-1)^{k+1} \sum_{j=0}^{k-1} \frac{(-1)^{j}\binom{2 k}{j}}{\binom{2 k}{k}} & =\frac{1}{2} \frac{(-1)^{k+1}}{\binom{2 k}{k}} \sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j}+\frac{1}{2\binom{2 k}{k}}\binom{2 k}{k} \\
& =0+\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

where we have used the identity $\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}=0($ with $n=2 k)$.

