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In this paper we study relations between nowhere-zero Zk − and integer-valued
flows in graphs and the functions FG(k) and IG(k) evaluating the numbers of
nowhere-zero Zk − and k-flows in a graph G, respectively. It is known that FG(k) is a
polynomial for k > 0. We show that IG(k) is also a polynomial and that
2m(G)FG(k) \ IG(k) \ (m(G)+1) FG(k), where m(G) is the rank of the cocycle
matroid of G. Finally we prove that FG(k+1) \ FG(k) · k/(k−1) and IG(k+1) \
IG(k) · k/(k−1) for every k > 1. © 2002 Elsevier Science (USA)

1. INTRODUCTION

A graph admits a nowhere-zero k-flow if its edges can be oriented and
assigned values ±1, ..., ±(k−1) so that the sum of the incoming values
equals the sum of the outcoming ones for every vertex of the graph. Using
nonzero elements of an additive Abelian group A instead of integers, we get
a nowhere-zero A-flow in the graph. By Tutte [15, 16], a graph admits a
nowhere-zero k-flow if and only if it admits a nowhere-zero A-flow for any
Abelian group A of order k. Nowhere-zero flows in graphs present a
concept dual to graph colouring, because, by Tutte [16], a planar graph is
k-colourable if and only if its dual admits a nowhere-zero k-flow.

The chromatic polynomial also has a dual concept, namely the flow
polynomial introduced by Tutte [16]. If G is a graph, then the value FG(k)
of the flow polynomial of G is equal to the number of nowhere-zero
A-flows in G (with respect to arbitrary but fixed orientation of G), whenever
A is an Abelian group of order k.

We show that also the number of nowhere-zero k-flows in G can be
evaluated by a polynomial IG(k) for k > 0. Studying certain equivalence
relations on the sets of nowhere-zero k-flows in G and totally cyclic orien-
tations of G we prove that 2m(G)FG(k) \ IG(k) \ (m(G)+1) FG(k), where
m(G) denotes the rank of the cocycle matroid of G. The polynomials FG(k)



and IG(k) satisfy FG(k+1) \ FG(k) · k/(k−1) and IG(k+1) \ IG(k) · k/
(k−1) for every integral k > 1. These estimates are best possible in general.

For more information about the flow polynomial and related topics see
Brylawski and Oxley [3], Tutte [18, 19], and Welsh [20]. More details
about nowhere-zero flow problems can be found in Jaeger [6], Seymour
[12], Younger [21], Zhang [22], and Kochol [8].

2. NOWHERE-ZERO FLOWS IN GRAPHS

The graphs considered in this paper are all finite and unoriented. Mul-
tiple edges and loops are allowed. If G is a graph, then V(G) and E(G)
denote the sets of vertices and edges of G, respectively. We associate with
each edge of G two distinct arts, distinct for distinct edges. If one of the
arts corresponding to an edge is denoted by x, the other is denoted by x−1.
When the ends of an edge e are u and v, one of the arcs corresponding to e
is said to be directed from u to v (and the other from v to u). In particular, a
loop corresponds to two distinct arcs both directed from a vertex to itself.
Let D(G) devote the set of arcs on G. Then |D(G)|=2 |E(G)|.

More formally, following the definition of Bondy and Murty [2], we can
define a graph G as a quintuple (V(G), E(G), fG, D(G), dG) consisting of a
nonempty set of vertices V(G), a set of edges E(G), an incidence function
fG, a set of arcs D(G)=E(G)×{0, 1}, and a map dG: D(G)Q V(G)×
V(G). E(G) and D(G) are disjoint from V(G) and the function fG maps
each edge e of G to an unordered pair of (not necessarily distinct) vertices
of G, which are called the ends of e. If dG(e, 0)=(u, v), then dG(e, 1)=
(v, u) and fG(e)=uv. We also say that (e, 0), (e, 1) are arcs on e, (e, 0) is
directed from u to v, and (e, 1) is directed from v to u and write
(e, 0)=(e, 1)−1, (e, 1)=(e, 0)−1.

If X ı D(G), then denote by X−1={x ¥ D(G); x−1 ¥X}. By an orienta-
tion of G we mean any X ı D(G) such that X 2X−1=D(G) and
X 5X−1=”. (In other words, an orientation of G can be considered as a
directed graph arising from G after endowing each edge by an orientation.)
If W ı V(G), then the set of arts of D(G) directed from W to V(G)\W is
denoted by w+G (W). Let w−G (W)=(w

+
G (W))

−1. We write w+G (v) and w−G (v)
instead of w+G ({v}) and w−G ({v}), respectively.

In this paper, every Abelian group is additive. If A is an Abelian group,
then an A-chain in G is a mapping j: D(G)Q A such that j(x−1)=−j(x)
for every x ¥ D(G). The support of j, denoted by s(j), is the set of edges
associated with the arcs of G having nonzero values in j. An A-chain j in
G is called nowhere-zero if s(j)=E(G).

A (nowhere-zero) A-chain j in G satisfying ;x ¥ w+G (v) j(x)=0 for every
vertex v of G is called a, (nowhere-zero) A-flow in G. If k is a positive
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integer, then by a (nowhere-zero) k-flow j in G we mean a (nowhere-zero)
Z-flow in G such that |j(x)| < k for every x ¥ D(G). This concept coincides
with the usual definition of nowhere-zero flows in graphs presented, e.g., in
Jaeger [6] (and also mentioned in the introduction). Note that a graph G
has a nowhere-zero 1-flow if and only if E(G)=”. It is well-known that a
graph with a bridge does not admit a nowhere zero A-flow for any Abelian
group A.

Let m(G)=|E(G)|− |V(G)|+c(G) where c(G) denotes the number of
components of G. m(G) is the number of edges obtained after deleting the
edges of a spanning forest from G (in [1], m(G) is called the cyclomatic
number of G).

By Tutte [16] (see also [6, 22]), for every graph G, there exists a poly-
nomial function FG(k) of k, called the flow polynomial on G, such that the
value FG(k) is equal to the number of nowhere-zero A-flows in G, whenever
A is an Abelian group of order k. Note that FG(k)=1 if E(G)=” (there
is exactly one mapping j:”Q A, namely the empty set) and FG(k)=0 if G
has a bridge. In all other cases FG(k) has degree m(G).

Thus the number of nowhere-zero A-flows in a graph does not depend
on the structure of A but only on its order. In this paper we study only
Zk − and k-flows in graphs.

3. EQUIVALENCES AND ORIENTATIONS ASSOCIATED
WITH FLOWS

If j is a nowhere-zero k-flow in a graph G, then denote by [j]k the
nowhere-zero Zk-flow in G such that [j]k(x)=[j(x)]k for every x ¥ D(G).
Define an equivalence relation hG, k on the set of nowhere-zero k-flows in G
so that nowhere-zero k-flows j and jŒ are hG, k-equivalent if [j]k=[jŒ]k.
Let [j] hG, k denote the hG, k-class containing j (the set of nowhere-zero
k-flows in G which are hG, k-equivalent to j). By Tutte [15], if k is a
nowhere-zero Zk-flow in G, then there exists a nowhere-zero k-flow j in G
such that [j]k=k (see also [22]). Thus, by Tutte [15], the following
holds.

Lemma 1. Let G be a graph. Then the mapping [j] hG, k W [j]k is a
bijection from the set of hG, k-classes to the set of nowhere-zero Zk-flows in G.

A circuit is a connected graph with all vertices of valency two. A cycle is
a graph with all vertices of even valency. A directed circuit (directed-cycle)
is an orientation of a circuit (cycle) such that for every vertex v, the number
of arts entering v equals the number of arcs leaving v. (Note that” ı D(G)
is also a directed cycle.) If C is a directed cycle in D(G), then denote by jC
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the 2-flow in G such that jC(x)=1 for x ¥ C, jC(x)=−1 for x ¥ C−1, and
jC(x)=0 otherwise.

Let j be a nowhere-zero Z-chain in G. Then {x ¥ D(G); j(x) > 0} is an
orientation of G. It is denoted by Xj and called the positive orientation of
j. The following statement is well known (see [5, 11, 22]).

Lemma 2. An orientation X of a connected graph G is a positive orienta-
tion of a nowhere-zero k-flow if and only if |w−G (W) 5X|/|w+G (W) 5X| [
k−1 for every” …W … V(G).

Corollary 1. Suppose X is an orientation in a graph G. Then the
following conditions are pairwise equivalent.

(a) X is a positive orientation of a nowhere-zero Z-flow in G.
(b) For every two distinct vertices u, v from one component of G there

exist directed paths from u to v and from v to u.
(c) Every arc of X is covered by a directed circuit in X.

Proof. (a) S (b) follows from Lemma 2 and the max-flow min-cut
theorem. Implications (b) S (c) and (c) S (a) are easy to check. L

Lemma 3. If j and jŒ are hG, k-equivalent nowhere-zero k-flows in a
graph G, then Xj 0XjŒ is a directed cycle. On the other hand, if C is a
directed cycle in Xj, then these exists precisely one jœ ¥ [j] hG, k, namely
jœ=j−kjC, such that C=Xj 0Xjœ.

Proof. Clearly jŒ(x) is either j(x)−k or j(x) for every x ¥Xj.
Thus j̃=(j−jŒ)/k is a 2-flow in G such that j̃(x)=1 iff x ¥Xj 0XjŒ.
Every 2-flow in G equals jCŒ for some directed cycle CŒ, whence Xj 0XjŒ
is a directed cycle. Conversely, if C is a directed cycle in Xj, then jœ=
j−kjC is hG, k-equivalent to j and C=Xj 0Xjœ. Furthermore, if j̄ is
hG, k-equivalent to jœ and Xj̄=Xjœ, then j̄=jœ. L

An orientation X of a graph in which every arc is covered by a directed
circuit in X is called totally cyclic. Let C(G) denote the set of all totally
cyclic orientations of G. Let GG be a relation on C(G) such that
(X, XŒ) ¥ GG if X0XŒ is a directed cycle, X, XŒ ¥ C(G).

Lemma 4. GG is an equivalence relation on C(G).

Proof. By Lemma 2, if k \ |E(G)|, then every X ¥ C(G) has a now-
here-zero k-flow satisfying Xj=X. Furthermore, by Lemma 3, (j1, j2)W
(Xj1 , Xj2 ) is a surjection from the set of pairs of hG, k (formally, an
equivalence is a set of pairs) to the set of pairs of GG. Therefore GG is an
equivalence, since hG, k is so. L
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Corollary 2. Let G be a graph and j, jŒ be nowhere-zero k-flows in G,
k > 0. Then

(a) if j is hG, k-equivalent to jŒ, then Xj is GG-equivalent to XjŒ;
(b) the number of directed cycles in Xj is equal to |[j] hG, k |=

|[Xj] GG |.

Proof. Follows directly from Lemma 3. L

Example 1. Let Hn be a graph consisting of two vertices v1, v2 and n
parallel edges e1, ..., en, n \ 2. Let x1, ..., xn be the arcs on e1, ..., en directed
from v1 to v2, respectively. Consider a nowhere-zero n-flow jn in Hn such
that jn(x1)=n−1 and jn(x2)=jn(x3)=· · ·=jn(xn)=−1. Then Xjn=
{x1, x

−1
2 , x

−1
3 , ..., x

−1
n }, and, by Corollary 2(b), |[jn] hHn, k |=|[Xjn] GHn |=

n for every k \ n.
Consider the graph H4 and nowhere-zero 3-flows j and jŒ in H4 such

that 2j(x1)=j(x2)=−2j(x3)=−j(x4)=2 and jŒ(x1)=2jŒ(x2)=
−jŒ(x3)=−2jŒ(x4)=2. Then j – jŒ(hH4, k) for every k \ 3. On the other
hand Xj=XjŒ={x1, x2, x

−1
3 , x

−1
4 }, and, by Corollary 2(b), |[j] hH4, k |=

|[jŒ] hH4, k |=|[Xj] GH4 |=6 for every k \ 3.
Let IG(k) denote the number of nowhere-zero k-flows in a graph G. For

every orientation X of G, let IX(k) denote the number of nowhere-zero
k-flows j in G such that Xj=X. By Corollary 1, IX(k)=0 if X is not
totally cyclic.

Denote by CG(G) the set of equivalence classes of GG. CG(G) is a parti-
tion of C(G) (the set of totally cyclic orientations of G). If X ¥ CG(G) and
X, XŒ ¥X, then, by Lemma 3, jW j−kjX0XŒ is a bijection between the
sets of nowhere-zero k-flows in G with positive orientations X and XŒ,
respectively. Thus IX(k)=IXŒ(k) for every k > 0. Denote this value by
IX(k). We have

IG(k)= C
X ¥ C(G)

IX(k)= C
X ¥ CG(G)

IX(k) · |X| (k > 0). (1)

Consider X ¥ CG(G) and k > 0. Let T be the set of nowhere-zero
k-flows j in G such that Xj ¥X. Then |T|=;X ¥X IX(k)=|X| · IX(k).
By Corollary 2, if j ¥ T, then [j] hG, k ı T and, furthermore, |[j] hG, k |=
|[Xj] GG |=|X|. Thus T can be partitioned into IX(k) sets which are
hG, k-classes. Since, by Lemma 1, FG(k) is the number of all hG, k-classes, we
get the following formula.

FG(k)= C
X ¥ CG(G)

IX(k)= C
X ¥ C(G)

IX(k)
|[X] GG |

(k > 0). (2)
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4. POLYNOMIALS IG(k) AND IX(k)

We expect familiarity with basic properties of polytopes (see, e.g.,
[10, 13, 23]). Every polytope P in Rn is the convex hull of the (finite) set
of its vertices. If these are integral, then P is called integral. The dimen-
sion of a polytope is the dimension of its affine hull. By an extended
interior of a polytope P we mean any nonempty set arising from P after
deleting some faces of P. Every extended interior of a polytope is a
convex set. The following statement is proved by Ehrhart [4] (see also
Stanley [14]).

Lemma 5. If P̄ is an extended interior of an integral polytope P, then
these exists a polynomial f such that the number of integral vectors from
kP̄ is equal to f(k) for every k > 0. The degree of f is equal to the dimension
of P.

Theorem 1. Let X be an orientation of a graph G. Then there exists a
polynomial function f of k such that IX(k)=f(k). The degree of f is m(G)
if X is totally cyclic and f=0 otherwise.

Proof. As already noted if X is not totally cyclic, then IX(k)=0.
Assume that X is totally cyclic, and let UX(ŪX) be the set of mappings
j: XQ R which can be extended to R-flows in G and satisfy
0 [ j(x) [ 1(0 < j(x) < 1) for every x ¥X. Considering UX and ŪX as
vectors indexed by X, we get that ŪX is an extended interior of UX and
IX(k) equals the number of integral points in kŪX. By Lemma 5, it suffices
to show that UX is an integral polytope of dimension m(G). This follows
from a result of Tutte [17] (see also [13, Chapter 19.3]) who proved that
UX={x ¥ RX; Mx [ b} where M is a totally unimodular matrix of rank
|V(G)|−c(G) and b is an integral vector. Thus IX(k) is a polynomial of
degree m(G) (see also Remark 2 below). L

Theorem 2. Let G be a graph. Then there exists a polynomial function f
of k such that FG(k)=f(k). The degree of f is m(G) if G is bridgeless and
f=0 otherwise.

Proof. It is known that every bridgeless graph has a totally cyclic
orientation. Thus the statement follows from Theorem 1 and (1). L

We call IG(k) and IX(k) the integral flow polynomials of G and X,
respectively.
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5. BOUNDS BETWEEN FG(k) AND IG(k)

The following statement is proved in [9].

Lemma 6. Let X be a totally cyclic orientation of a graph G. Then there
exists an m(G)-tuple (C1, ..., Cm(G)) of directed circuits in X covering all arcs
of X with the property that every Ci contains an arc xi(i=1, ..., m(G)) such
that xi ¨ Cj for each j < i.

In order to obtain an upper bound for the number of directed cycles
in an orientation of a graph we will introduce one more concept. Let X
be an orientation of a graph G and u be an integer-valued function on
V(G). Then Y ıX is called a u-suborientation of X if |w+G (v) 5 Y|−
|w−G (v) 5 Y|=u(v) for every vertex v of G. Clearly, directed cycles in X are
precisely the 0-suborientations of X where 0(v)=0 for every v ¥ V(G).

Lemma 7. If X is an orientation of a graph G and u is an integer-valued
function on V(G), then the number of u-suborientations of X is at most 2m(G).

Proof. We use induction on m(G). If m(G)=0, then G is a forest and
we can easily check that the number of u-suborientations of X is at most
1=2m(G). If m(G) > 0, then G has an edge e which is not a bridge. Thus
m(G−e)=m(G)−1. Let x be the arc from X which corresponds to e.
Suppose x is directed from v1 to v2 . Take uŒ: V(G)Q Z so that uŒ=u if
v1=v2 and otherwise uŒ(v1)=u(v1)−1, uŒ(v2)=u(v2)+1, and uŒ(v)=u(v)
for every v ¥ V(G)0{v1, v2}. Let XŒ=X0{x}. Since XŒ is an orientation of
G−e, then, by the induction hypothesis, there are at most 2m(G−e)

u-suborientations (uŒ-suborientations) of XŒ. Thus there are at most
2 · 2m(G−e)=2m(G) u-suborientations of X. L

Corollary 3. Every totally cyclic orientation of a graph G has at least
m(G)+1 and at most 2m(G) directed cycles.

Proof. Follows from Lemmas 6, 7, and the fact that the directed cycles
in an orientation X of G are the 0-suborientations in X. (Note that ” is
among the directed cycles.) L

Theorem 3. Let G be a graph. Then 2m(G)FG(k) \ IG(k) \ (m(G)
+1) FG(k) for every k > 0.

Proof. By Corollaries 2(b) and 3, 2m(G) \ |X| \ m(G)+1 for every X ¥

CG(G). Then, by (1) and (2), 2m(G)FG(k)=;X ¥ CG(G) IX(k) 2
m(G) \;X ¥ CG(G)

IX(k) |X|=IG(k) \;X ¥ CG(G) IX(k) (m(G)+1)=(m(G)+1) FG(k). L

Remark 1. Let G be a union of two edge-disjoint subgraphs H and HŒ
with at most one vertex in common. ThenFG(k)=FH(k) ·FHŒ(k) and IG(k)=
IH(k) · IHŒ(k).
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Example 2. If G is a forest, then m(G)=0 and 2m(G)FG(k)=IG(k)=
(m(G)+1) FG(k) for every k > 0. We also give less trivial examples which
show that Corollary 3 and Theorem 3 are best possible in a certain sense.

Let X={x1, x
−1
2 , x

−1
3 , ..., x

−1
n } be the orientation of Hn described in

Example 1. Then X has precisely n−1 directed circuits and n=m(Hn)+1
directed cycles. Moreover if n=2, 3, then every totally cyclic orientation of
Hn has precisely n directed cycles. Therefore, if G is homeomorphic with H2
or H3, then IG(k)=nFG(k)=(m(G)+1) FG(k).

Let G be a graph consisting of n blocks G1, ..., Gn, which are circuits
(or, equivalently, which are homeomorphic with H2). Then m(G)=n
and IGi (k)=2FGi (k) for i=1, ..., n. By Remark 1, IG(k)=2nFG(k)=
2m(G)FG(k).

Remark 2. The degree of IX(k) can be established without using
dimension of polytopes. Let X be a totally cyclic orientation of a graph G.
By (2), FG(k) \ IX(k); thus IX(k) can have degree at most m(G). Let
(C1, ..., Cm(G)) and (x1, ..., xm(G)) be m(G)-tuples satisfying the assumptions
from Lemma 6. Then for every positive integer s and an m(G)-tuple
of integers a=(a1, ..., am(G)) satisfying 1 [ ai [ s we get a nowhere-zero
(m(G) · s+1)-flow ja=;m(G)

i=1 aijCi with positive orientation X. If a=
(a1, ..., am(G)) ] aŒ=(a −1, ..., a

−

m(G)) and j is the largest index satisfying
aj ] a

−

j, then ja(xj) ] jaŒ(xj). Therefore, a W ja is an injective mapping.
Thus IX(m(G) · s+1) \ sm(G), which implies that lim infkQ. IX(k)/km(G) > 0,
whence IX(k) has degree at least m(G).

6. GROWTH OF FLOW POLYNOMIALS

Theorem 4. Let G be a bridgeless graph, E(G) ]”, and let X be a
totally cyclic orientation of G. Then for every k > 1,

IX(k+1) \ IX(k) · k/(k−1),

FG(k+1) \ FG(k) · k/(k−1),

IG(k+1) \ IG(k) · k/(k−1),

Proof. By (1) and (2), it suffices to prove the statement for IX(k).
Suppose that IX(k) > 0 and let S(T) denote the set of nowhere-zero k-flows
((k+1)-flows) in G with positive orientation X. For every j ¥ S and any
nonempty directed cycle C in X, define by C-lift (simply a lift) of j the
unique flow in T0S of the form j+rjC where r is a positive integer. Let n
be the number of nonempty directed cycles in X. Then there exists exactly
n |S| lifts of j. Each such lift can be obtained at most n(k−1) times.
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Thus |T0S| \ |S|/(k−1), whence IX(k+1)=|T| \ |S| · k/(k−1)=IX(k) · k/
(k−1). L

Corollary 4. Let X be a totally cyclic orientation of a bridgeless graph
G, E(G) ]”, and assume IX(k+1), FG(k+1), IG(k+1) > 0. Then

IX(k+1) \ IX(k)+1,

FG(k+1) \ FG(k)+1,

IG(k+1) \ IG(k)+m(G)+1.

Proof. If IX(k+1) > 0, then in the proof of Theorem 4 it follows that
|T| > |S| and IX(k+1) \ IX(k)+1. Since FG(k+1), IG(k+1) > 0, there
exists, by (1), (2), X ¥ CG(G) such that IX(k) > 0; thus also IX(k+1) \
IX(k)+1. Hence, by (2), FG(k+1) \ FG(k)+1. By Corollary 3, |X| \
m(G)+1 for every X ¥ CG(G), whence, by (1), IG(k+1)=;X ¥ CG(G) IX(k+1)
|X| \;X ¥ CG(G) (IX(k)+1) |X| \ (;X ¥ CG(G) IX(k) |X|)+m(G)+1=IG(k)+
m(G)+1. L

Let Cn be the circuit of length n. Then m(Cn)=1 and FCn (k)=k−1.
Cn has exactly two totally cyclic orientations X1, X2 and IX1 (k)=
IX2 (k)=k−1. By (1), ICn (k)=2(k−1). Thus the bounds from Theorem 4
and Corollary 4 are best possible in this case.
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