Graph polynomials from simple graph sequences

Delia Garijo ${ }^{1} \quad$ Andrew Goodall ${ }^{2}$
Patrice Ossona de Mendez ${ }^{3}$ Jarik Nešetřil ${ }^{2}$
${ }^{1}$ University of Seville, Spain
${ }^{2}$ Charles University, Prague, Czech Republic
${ }^{3}$ CAMS, CNRS/EHESS, Paris, France

KAIST Discrete Math Seminar, 14 April 2014
Dept. of Mathematical Sciences, KAIST, Daedeok Innopolis, Daejeon
we looking at?
Building strongly polynomial graph sequences
interpretation schemes
Open problems
ratio expert

Chromatic polynomial

Definition by evaluations at positive integers

$k \in \mathbb{N}, \quad P(G ; k)=\#\{$ proper vertex k-colourings of $G\}$.

$$
P(G ; k)=\sum_{1 \leq j \leq|V(G)|} a_{j}(G) k^{\underline{j}}
$$

$a_{j}(G)=\#\{$ partitions of $V(G)$ into j independent subsets $\}$,

$$
P(G ; k)=\sum_{1 \leq j \leq|V(G)|}(-1)^{j} b_{j}(G) k^{|V(G)|-j}
$$

$b_{j}(G)=\#\{j$-subsets of $E(G)$ containing no broken cycle $\}$.

$$
u v \in E(G), \quad P(G ; k)=P(G \backslash u v ; k)-P(G / u v ; k)
$$

Independence polynomial

Definition by coefficients

$$
I(G ; x)=\sum_{1 \leq j \leq|V(G)|} b_{j}(G) x^{j}
$$

$b_{j}(G)=\#\{$ independent subsets of $V(G)$ of size $j\}$.

$$
\begin{gathered}
v \in V(G), \quad I(G ; x)=I(G-v ; x)+x I(G-N[v] ; x) \\
I(L(G) ; x)=\text { matching polynomial of } G
\end{gathered}
$$

(Chudnovsky \& Seymour, 2006) $K_{1,3} \not \mathbb{Z}_{i} G \Rightarrow I(G ; x)$ real roots

$$
\left.b_{j}^{2} \geq b_{j-1} b_{j+1}, \quad \text { (implies } b_{1}, \ldots, b_{|V(G)|} \text { unimodal }\right)
$$

Definition

Graphs G, H.
$f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $u v \in E(G) \Rightarrow f(u) f(v) \in E(H)$.

Definition

H with adjacency matrix $\left(a_{s, t}\right)$, weight $a_{s, t}$ on $s t \in E(H)$,

$$
\operatorname{hom}(G, H)=\sum_{f: V(G) \rightarrow V(H)} \prod_{u v \in E(G)} a_{f(u), f(v)}
$$

$\operatorname{hom}(G, H)=\#\{$ homomorphisms from G to $H\}$ $=\#\{H$-colourings of $G\}$
when H simple $\left(a_{s, t} \in\{0,1\}\right)$ or multigraph $\left(a_{s, t} \in \mathbb{N}\right)$

The main question

Which sequences $\left(H_{k, \ell, \ldots}\right)$ of simple graphs are such that, for all graphs G, for each $k, \ell, \cdots \in \mathbb{N}$ we have

$$
\operatorname{hom}\left(G, H_{k, \ell, \ldots}\right)=p(G ; k, \ell, \ldots)
$$

for polynomial $p(G)$?

Characterizing simple graph sequences $\left(H_{k, \ell, \ldots}\right)$ with this property gives straightforward characterization for multigraph sequences too (allowing multiple edges \& loops).

What are we looking at?

Example 1

(K_{k})
$\operatorname{hom}\left(G, K_{k}\right)=P(G ; k)$
chromatic polynomial

Examples

Strongly polynomial sequences of graphs Counting induced subgraphs

Example 2

Examples

Strongly polynomial sequences of graphs Counting induced subgraphs

Example 3

Example 4

$$
\left(K_{1}^{1}+K_{1, k}\right)
$$

$$
\operatorname{hom}\left(G, K_{1}^{1}+K_{1, k}\right)=I(G ; k)
$$

independence polynomial

Example 5

Proposition (Garijo, G., Nešetril, 2013+)

$\operatorname{hom}\left(G, Q_{k}\right)=p\left(G ; k, 2^{k}\right)$ for bivariate polynomial $p(G)$

Examples

Strongly polynomial sequences of graphs Counting induced subgraphs

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Since hom $\left(G_{1} \cup G_{2}, H\right)=\operatorname{hom}\left(G_{1}, H\right) \operatorname{hom}\left(G_{2}, H\right)$, suffices to consider connected G.

Example

- $\left(K_{k}\right),\left(K_{k}^{1}\right) .\left(\overline{k K_{2}}\right)$ are strongly polynomial
- $\left(K_{k}^{\ell}\right)$ is strongly polynomial (in k, ℓ)
- $\left(Q_{k}\right)$ not strongly polynomial (but polynomial in k and 2^{k})
- $\left(C_{k}\right),\left(P_{k}\right)$ not strongly polynomial (but eventually polynomial in k)

Subgraph criterion for strongly polynomial

$$
\begin{aligned}
H_{k} \text { simple: } & \operatorname{hom}\left(G, H_{k}\right)=\sum_{\substack{S \leq_{1} H_{k} \\
|V(S)| \leq|V(G)|}} \operatorname{sur}_{\mathrm{v}}(G, S) \\
= & \sum_{S / \cong} \operatorname{sur}_{\mathrm{v}}(G, S) \#\left\{\text { induced copies of } S \text { in } H_{k}\right\}
\end{aligned}
$$

Proposition (de la Harpe \& Jaeger 1995)

$\left(H_{k}\right)$ is strongly polynomial \Longleftrightarrow
\forall connected $S \#\left\{\right.$ induced subgraphs $\cong S$ in $\left.H_{k}\right\}$ polynomial in k

Subgraph criterion for strongly polynomial

$$
\begin{aligned}
H_{k} \text { simple: } & \operatorname{hom}\left(G, H_{k}\right)=\sum_{\substack{S S_{i} H_{k} \\
|V(G) \leq|\mathcal{V}(G)|}} \operatorname{sur}_{v}(G, S) \\
= & \sum_{S / \cong} \operatorname{sur}_{v}(G, S) \#\left\{\text { induced copies of } S \text { in } H_{k}\right\}
\end{aligned}
$$

(for each S want this polynomial in k)

Proposition (de la Harpe \& Jaeger 1995)

$\left(H_{k}\right)$ is strongly polynomial \Longleftrightarrow
\forall connected S \#\{induced subgraphs $\cong S$ in $\left.H_{k}\right\}$ polynomial in k

Example: chromatic polynomial

$$
\begin{aligned}
\operatorname{hom}\left(G, K_{k}\right)=P(G ; k) & =\sum_{1 \leq j \leq \min \{|V(G)|, k\}} \operatorname{sur} v\left(G, K_{j}\right)\binom{k}{j} \\
& =\sum_{1 \leq j \leq|V(G)|} \operatorname{sur} v\left(G, K_{j}\right)\binom{k}{j},
\end{aligned}
$$

as $\binom{k}{j}=0$ when $j>k \geq|V(G)|$.

Eventually polynomial but not strongly polynomial

$$
\begin{aligned}
& \operatorname{hom}\left(G, C_{k}\right)=\sum_{1 \leq j \leq \min \{|V(G)|, k-1\}} \operatorname{sur}_{v}\left(G, P_{j}\right) k+\operatorname{sur}_{\mathrm{v}}\left(G, C_{k}\right) \\
& \operatorname{hom}\left(C_{3}, C_{3}\right)=6, \operatorname{hom}\left(C_{3}, C_{k}\right)=0 \text { when } k=2 \text { or } k \geq 4
\end{aligned}
$$

Constructions

Loose threads up until a few months ago...

Proposition (de la Harpe \& Jaeger, 1995; Garijo, G., Nešetřil, 2013+)

If $\left(H_{k}\right)$ is strongly polynomial and H_{k} simple, then

- ($\left.\overline{H_{k}}\right)$ (complements),
- ($L\left(H_{k}\right)$) (line graphs),
are also strongly polynomial.
Also, $\left(\ell H_{k}\right)$ is strongly polynomial (in k and ℓ).

Proposition (Garijo, G., Nešetřil, 2013+)

If $\left(H_{k}\right)$ is strongly polynomial, at most one loop each vertex of H_{k}, then

- $\left(H_{k}^{0}\right)$ (remove all loops)
- (H_{k}^{1}) (add loops to make 1 loop each vertex)
are also strongly polynomial.
More generally, $\left(H_{k}^{\ell}\right)$ is strongly polynomial (in k and ℓ).

Proposition

If $\left(F_{j}\right),\left(H_{k}\right)$ are strongly polynomial, then

- $\left(F_{j} \cup H_{k}\right)$ (disjoint union)
- $\left(F_{j}+H_{k}\right)$ (join)
- $\left(F_{j} \times H_{k}\right)$ (direct/categorical product)
- $\left(F_{j}\left[H_{k}\right]\right)$ (lexicographic product)
are strongly polynomial (in j and k).

Example

Beginning with trivially strongly polynomial sequence $\left(K_{1}\right)$, following are also strongly polynomial:

- multiple: $\left(k K_{1}\right)=\left(\overline{K_{k}}\right)$
- complement: $\left(K_{k}\right)$ (chromatic polynomial)
- loop-addition: $\left(K_{k}^{\ell}\right)$ (Tutte polynomial)
- join: $\left(K_{k-j}^{1}+K_{j}^{\ell}\right)$ (Averbouch-Godlin-Makowsky polynomial - includes Tutte polynomial, satisfies three-term recurrence in $\backslash u v, / u v$ and $-u-v$)

Question

Strongly polynomial sequences:

- $\left(\overline{K_{j}}+\overline{K_{k}}\right)=\left(K_{j, k}\right)$
- $\left(L\left(K_{j, k}\right)\right)=\left(K_{j} \square K_{k}\right)$ (Rook's graph)
$\left(F_{j}\right),\left(H_{k}\right)$ strongly polynomial $\Rightarrow\left(F_{j} \square H_{k}\right)$ strongly polynomial?

Definition

Generalized Johnson graph $J_{k, \ell, D}, D \subseteq\{0,1, \ldots, \ell\}$ vertices $\binom{[k]}{\ell}$, edge $u v$ when $|u \cap v| \in D$

- Johnson graphs $D=\{k-1\}$
- Kneser graphs $D=\{0\}$

Proposition (de la Harpe \& Jaeger, 1995; Garijo, G., Nešetřil, 2013+)
For every ℓ, D, sequence $\left(J_{k, \ell, D}\right)$ is strongly polynomial (in k).

Question

Can generalized Johnson graphs be generated from simpler sequences by any of the constructions described in de la Harpe \& Jaeger (1995) and Garijo, Goodall \& Nešetřil (2013+)?

Simple graph sequence $\left(H_{k}\right)$ strongly polynomial iff

- $\forall G \exists$ polynomial $p(G) \forall k \in \mathbb{N} \quad \operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$
- $\forall F \exists$ polynomial $q(F) \forall k \in \mathbb{N} \quad \operatorname{ind}\left(F, H_{k}\right)=q(F ; k)$

Unary operations ~ and binary operations $*$ such that if simple graph sequences $\left(F_{j}\right)$ and $\left(H_{k}\right)$ are strongly polynomial then

- $\left(\widetilde{H}_{k}\right)$ is strongly polynomial (e.g. complement, line graph)
- $\left(F_{j} * H_{k}\right)$ is strongly polynomial in j, k (e.g. join, lexicographic product)

Satisfaction sets

Quantifier-free formula ϕ with n free variables $\left(\phi \in \mathrm{QF}_{n}\right)$ with symbols from relational structure \mathbf{H} with domain $V(\mathbf{H})$.

Satisfaction set $\phi(\mathbf{H})=\left\{\left(v_{1}, \ldots, v_{n}\right) \in V(\mathbf{H})^{n}: \mathbf{H} \models \phi\right\}$.
e.g. for graph structure H (symmetric binary relation $x \sim y$ interpreted as x adjacent to y), and given graph G on n vertices,

$$
\begin{gathered}
\phi=\phi_{G}=\bigwedge_{i j \in E(G)}\left(v_{i} \sim v_{j}\right) \\
\phi_{G}(H)=\left\{\left(v_{1}, \ldots, v_{n}\right): i \mapsto v_{i} \text { is a homomorphism } G \rightarrow H\right\} \\
\left|\phi_{G}(H)\right|=\operatorname{hom}(G, H) .
\end{gathered}
$$

Strongly polynomial sequences of structures

Definition

Sequence $\left(\mathbf{H}_{k}\right)$ of relational structures strongly polynomial iff $\forall \phi \in Q F \exists$ polynomial $r(\phi) \forall k \in \mathbb{N} \quad\left|\phi\left(\mathbf{H}_{k}\right)\right|=r(\phi ; k)$

Lemma

Equivalently,

- $\forall \mathbf{G} \exists$ polynomial $p(\mathbf{G}) \forall k \in \mathbb{N} \quad \operatorname{hom}\left(\mathbf{G}, \mathbf{H}_{k}\right)=p(\mathbf{G} ; k)$, or
- $\forall \mathbf{F} \exists$ polynomial $q(\mathbf{F}) \forall k \in \mathbb{N} \quad \operatorname{ind}\left(\mathbf{F}, \mathbf{H}_{k}\right)=q(\mathbf{F} ; k)$.

Transitive tournaments (\vec{T}_{k}) strongly polynomial sequence of digraphs (e.g. count induced substructures).

Graphical QF interpretation schemes

I: Relational σ-structures $\mathbf{A} \quad \longrightarrow \quad$ Graphs H

Lemma

There is

$$
\tilde{I}: \phi \in \mathrm{QF}(\text { Graphs }) \quad \longmapsto \tilde{I}(\phi) \in \mathrm{QF}(\sigma \text {-structures })
$$

such that

$$
\phi(I(\mathbf{A}))=\widetilde{I}(\phi)(\mathbf{A})
$$

In particular, $\left(\mathbf{A}_{k}\right)$ strongly polynomial $\quad \Rightarrow \quad\left(H_{k}\right)=\left(I\left(\mathbf{A}_{k}\right)\right)$ strongly polynomial.

From graphs to graphs

- All previous constructions (complementation, line graph, disjoint union, join, direct product,...) special cases of interpretation schemes / from Marked Graphs (added unary relations) to Graphs.
- Cartesian product and other more complicated graph products are special kinds of such interpretation schemes too.
- Generalized Johnson graphs $\left(J_{k, \ell, D}\right)$ arise as QF interpretations of transitive tournaments \vec{T}_{k}
- Half-graphs are QF interpretations of a transitive tournament together with "marks" (unary relations used to specfiy "upper" + "lower" vertices) and so form a strongly polynomial sequence.

- Intersection graphs of chords of a k-gon form a strongly polynomial sequence

(a) Square

(b) Pentagon

(d) Heptagon

Conjecture

All strongly polynomial sequences of graphs $\left(H_{k}\right)$ can be obtained by QF interpretation of a "basic sequence" (disjoint union of marked transitive tournaments of size polynomial in k).

Relational structures
Example interpretations
Everything?

Prime power $q=p^{d} \equiv 1(\bmod 4)$
Paley graph $P_{q}=\operatorname{Cayley}\left(\mathbb{F}_{q}\right.$, non-zero squares $)$,
Quasi-random graphs: $\operatorname{hom}\left(G, P_{q}\right) / \operatorname{hom}\left(G, G_{q, \frac{1}{2}}\right) \rightarrow 1$ as $q \rightarrow \infty$.

Proposition (Corollary to result of de la Harpe \& Jaeger, 1995)

$\operatorname{hom}\left(G, P_{q}\right)$ is polynomial in q for series-parallel G.
e.g. $\operatorname{hom}\left(K_{3}, P_{q}\right)=\frac{q(q-1)(q-5)}{8}$

Prime $q \equiv 1(\bmod 4), q=4 x^{2}+y^{2}$, [Evans, Pulham, Sheehan, 1981]:

$$
\operatorname{hom}\left(K_{4}, P_{q}\right)=\frac{q(q-1)}{1536}\left((q-9)^{2}-4 x^{2}\right)
$$

Is hom $\left(G, P_{q}\right)$ polynomial in q and x for all graphs G ?

Theorem (G., Nešetřil, Ossona de Mendez, 2014+)

If $\left(H_{k}\right)$ is strongly polynomial then there are only finitely many terms belonging to a quasi-random sequence of graphs.

- When is $\left(\operatorname{Cayley}\left(A_{k}, B_{k}\right)\right)$ polynomial in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
e.g. For $D \subset \mathbb{N}$, sequence ($\operatorname{Cayley}\left(\mathbb{Z}_{k}, \pm D\right)$) is polynomial iff D is finite or cofinite. (de la Harpe \& Jaeger, 1995)
- Can $\left(H_{k}\right)$ be verified to be strongly polynomial by testing hom $\left(G, H_{k}\right)$ for G only in a restricted class of graphs? (yes, for connected graphs - but for a smaller class?)
- Which graph polynomials defined by strongly polynomial sequences of graphs satisfy a reduction formula (size-decreasing recurrence) like the chromatic polynomial and independence polynomial?
- Develop similar theory for $\operatorname{hom}\left(H_{k}, G\right)$ (e.g. $\operatorname{hom}\left(C_{k}, G\right)=\sum \lambda^{k}, \lambda$ eigenvalues of G, determines characteristic polynomial of G by its roots).

감사 합니다
! ! !

Three papers

- P. de la Harpe and F. Jaeger, Chromatic invariants for finite graphs: theme and polynomial variations, Lin. Algebra Appl. 226-228 (1995), 687-722

Defining graphs invariants from counting graph homomorphisms. Examples. Basic constructions.

- D. Garijo, A. Goodall, J. Nešetřil, Polynomial graph invariants from homomorphism numbers. 40pp. arXiv: 1308.3999 [math.CO] Further examples. New construction using tree representations of graphs.
- A. Goodall, J. Nešetřil, P. Ossona de Mendez, Strongly polynomial sequences as interpretation of trivial structures. 17pp. Preprint. General relational structures: counting satisfying assignments for quantifier-free formulas. Building new polynomial invariants by interpretation of "trivial" sequences of marked tournaments.

