Graph polynomials from simple graph sequences

Delia Garijo¹ **Andrew Goodall**² Patrice Ossona de Mendez³ Jarik Nešetřil²

¹University of Seville, Spain

²Charles University, Prague, Czech Republic

³CAMS, CNRS/EHESS, Paris, France

KAIST Discrete Math Seminar, 14 April 2014 Dept. of Mathematical Sciences, KAIST, Daedeok Innopolis, Daejeon

TANGE OCHAGE Har Sh. m

Graph polynomials Graph homomorphisms

Chromatic polynomial

Definition by evaluations at positive integers

 $k \in \mathbb{N}, \quad P(G; k) = #\{ \text{proper vertex } k \text{-colourings of } G \}.$

$$P(G;k) = \sum_{1 \le j \le |V(G)|} a_j(G) k^{\underline{j}}$$

 $a_j(G) = #\{$ partitions of V(G) into j independent subsets $\},$

$$P(G; k) = \sum_{1 \le j \le |V(G)|} (-1)^{j} b_{j}(G) k^{|V(G)| - j}$$

 $b_j(G) = \#\{j \text{-subsets of } E(G) \text{ containing no broken cycle}\}.$

 $uv \in E(G), \quad P(G; k) = P(G \setminus uv; k) - P(G/uv; k)$

Graph polynomials Graph homomorphisms

Independence polynomial

Definition by coefficients

$$I(G; x) = \sum_{1 \le j \le |V(G)|} b_j(G) x^j,$$

 $b_j(G) = #\{$ independent subsets of V(G) of size $j\}$.

 $v \in V(G), \quad I(G;x) = I(G - v;x) + xI(G - N[v];x)$

I(L(G); x) = matching polynomial of G

(Chudnovsky & Seymour, 2006) $K_{1,3} \not\subseteq_i G \Rightarrow I(G; x)$ real roots $b_j^2 \ge b_{j-1}b_{j+1}$, (implies $b_1, \ldots, b_{|V(G)|}$ unimodal) What are we looking at?

Sequences giving graph polynomials Building strongly polynomial graph sequences Interpretation schemes Open problems

Graph polynomials Graph homomorphisms

Definition

Graphs G, H. $f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $uv \in E(G) \Rightarrow f(u)f(v) \in E(H)$.

Definition

H with adjacency matrix $(a_{s,t})$, weight $a_{s,t}$ on $st \in E(H)$,

$$\hom(G,H) = \sum_{f:V(G)\to V(H)} \prod_{uv\in E(G)} a_{f(u),f(v)}.$$

 $\begin{aligned} \hom(G,H) &= \#\{\text{homomorphisms from } G \text{ to } H\} \\ &= \#\{H\text{-colourings of } G\} \end{aligned}$

when H simple $(a_{s,t} \in \{0,1\})$ or multigraph $(a_{s,t} \in \mathbb{N})$

What are we looking at?

Sequences giving graph polynomials Building strongly polynomial graph sequences Interpretation schemes Open problems

Graph polynomials Graph homomorphisms

The main question

Which sequences $(H_{k,\ell,...})$ of simple graphs are such that, for all graphs G, for each $k, \ell, \cdots \in \mathbb{N}$ we have

$$\hom(G, H_{k,\ell,\ldots}) = p(G; k, \ell, \ldots)$$

for polynomial p(G)?

Characterizing simple graph sequences $(H_{k,\ell,...})$ with this property gives straightforward characterization for multigraph sequences too (allowing multiple edges & loops).

What are we looking at?

Sequences giving graph polynomials Building strongly polynomial graph sequences Interpretation schemes Open problems

Graph polynomials Graph homomorphisms

Examples

Strongly polynomial sequences of graphs Counting induced subgraphs

Example 1

$\hom(G, K_k) = P(G; k)$

chromatic polynomial

Examples

Strongly polynomial sequences of graphs Counting induced subgraphs

Example 2

 (\mathcal{K}^1_k) hom $(\mathcal{G},\mathcal{K}^1_k)=k^{|V(\mathcal{G})|}$

Examples

Strongly polynomial sequences of graph Counting induced subgraphs

Example 3

Examples

Strongly polynomial sequences of graph Counting induced subgraphs

Example 4

Examples Strongly polynomial sequences of g Counting induced subgraphs

Example 5

 $(K_2^{\Box k}) = (Q_k)$ (hypercubes)

Proposition (Garijo, G., Nešetřil, 2013+)

 $hom(G, Q_k) = p(G; k, 2^k)$ for bivariate polynomial p(G)

Examples Strongly polynomial sequences of graphs Counting induced subgraphs

Definition

 (H_k) is strongly polynomial (in k) if $\forall G \exists$ polynomial p(G) such that $\hom(G, H_k) = p(G; k)$ for all $k \in \mathbb{N}$.

Since $\hom(G_1 \cup G_2, H) = \hom(G_1, H) \hom(G_2, H)$, suffices to consider *connected* G.

Example

- (K_k) , (K_k^1) . $(\overline{kK_2})$ are strongly polynomial
- (K_k^{ℓ}) is strongly polynomial (in k, ℓ)
- (Q_k) not strongly polynomial (but polynomial in k and 2^k)
- (C_k) , (P_k) not strongly polynomial (but eventually polynomial in k)

Examples Strongly polynomial sequences of graphs Counting induced subgraphs

Subgraph criterion for strongly polynomial

$$H_k ext{ simple:} ext{ hom}(G, H_k) = \sum_{\substack{S \subseteq_i H_k \ |V(S)| \leq |V(G)|}} ext{surv}(G, S)$$

 $= \sum_{S/\cong} \operatorname{sur}_{\mathsf{v}}(G,S) \ \#\{ \text{induced copies of } S \text{ in } H_k \}$

Proposition (de la Harpe & Jaeger 1995)

(H_k) is strongly polynomial \iff \forall connected $S \ \#$ {induced subgraphs $\cong S$ in H_k } polynomial in k

Examples Strongly polynomial sequences of graphs Counting induced subgraphs

Subgraph criterion for strongly polynomial

$$H_k ext{ simple:} ext{ hom}(G, H_k) = \sum_{\substack{S \subseteq_i H_k \ |V(S)| \leq |V(G)|}} ext{surv}(G, S)$$

$$= \sum_{S/\cong} \operatorname{sur}_{\mathsf{v}}(G, S) \, \#\{ \text{induced copies of } S \text{ in } H_k \}$$

(for each S want this polynomial in k)

Proposition (de la Harpe & Jaeger 1995)

(H_k) is strongly polynomial \iff \forall connected $S \ \#$ {induced subgraphs $\cong S$ in H_k } polynomial in k

Examples Strongly polynomial sequences of graphs Counting induced subgraphs

Example: chromatic polynomial

Examples Strongly polynomial sequences of graphs Counting induced subgraphs

Eventually polynomial but not strongly polynomial

$\hom(G, C_k) = \sum_{1 \leq j \leq \min\{|V(G)|, k-1\}} \operatorname{sur}_{V}(G, P_j) k + \operatorname{sur}_{V}(G, C_k)$

 $hom(C_3, C_3) = 6$, $hom(C_3, C_k) = 0$ when k = 2 or $k \ge 4$

Constructions

Loose threads up until a few months ago...

Constructions Loose threads up until a few months ago...

Proposition (de la Harpe & Jaeger, 1995; Garijo, G., Nešetřil, 2013+)

If (H_k) is strongly polynomial and H_k simple, then

- $(\overline{H_k})$ (complements),
- $(L(H_k))$ (line graphs),

are also strongly polynomial. Also, (ℓH_k) is strongly polynomial (in k and ℓ).

Proposition (Garijo, G., Nešetřil, 2013+)

If (H_k) is strongly polynomial, at most one loop each vertex of H_k , then

- (H_k^0) (remove all loops)
- (H_k^1) (add loops to make 1 loop each vertex)

are also strongly polynomial. More generally, (H_k^{ℓ}) is strongly polynomial (in k and ℓ).

Constructions

Loose threads up until a few months ago...

Proposition

If (F_j) , (H_k) are strongly polynomial, then

- $(F_j \cup H_k)$ (disjoint union)
- $(F_j + H_k)$ (join)
- $(F_j \times H_k)$ (direct/categorical product)
- (*F_j*[*H_k*]) (lexicographic product)

are strongly polynomial (in j and k).

Constructions

Loose threads up until a few months ago...

Example

Beginning with trivially strongly polynomial sequence (K_1) , following are also strongly polynomial:

- multiple: $(kK_1) = (\overline{K_k})$
- complement: (K_k) (chromatic polynomial)
- loop-addition: (K_k^{ℓ}) (Tutte polynomial)

• join: $(K_{k-j}^1 + K_j^\ell)$ (Averbouch–Godlin–Makowsky polynomial – includes Tutte polynomial, satisfies three-term recurrence in $\langle uv, /uv | and -u - v \rangle$

Constructions Loose threads up until a few months ago...

Question

Strongly polynomial sequences:

$$\blacktriangleright (\overline{K_j} + \overline{K_k}) = (K_{j,k})$$

•
$$(L(K_{j,k})) = (K_j \Box K_k)$$
 (Rook's graph)

 (F_j) , (H_k) strongly polynomial $\Rightarrow (F_j \Box H_k)$ strongly polynomial?

Constructions Loose threads up until a few months ago...

Definition

Generalized Johnson graph $J_{k,\ell,D}$, $D \subseteq \{0, 1, \dots, \ell\}$ vertices $\binom{[k]}{\ell}$, edge uv when $|u \cap v| \in D$

- Johnson graphs $D = \{k 1\}$
- Kneser graphs $D = \{0\}$

Proposition (de la Harpe & Jaeger, 1995; Garijo, G., Nešetřil, 2013+)

For every ℓ , D, sequence $(J_{k,\ell,D})$ is strongly polynomial (in k).

Question

Can generalized Johnson graphs be generated from simpler sequences by any of the constructions described in de la Harpe & Jaeger (1995) and Garijo, Goodall & Nešetřil (2013+)?

Constructions Loose threads up until a few months ago...

Recap Relational structures Example interpretations Everything?

Simple graph sequence (H_k) strongly polynomial iff

- $\forall G \exists$ polynomial $p(G) \forall k \in \mathbb{N}$ hom $(G, H_k) = p(G; k)$
- $\forall F \exists$ polynomial $q(F) \forall k \in \mathbb{N}$ ind $(F, H_k) = q(F; k)$

Unary operations \sim and binary operations * such that if simple graph sequences (F_j) and (H_k) are strongly polynomial then

- (\widetilde{H}_k) is strongly polynomial (e.g. complement, line graph)
- (*F_j* * *H_k*) is strongly polynomial in *j*, *k* (e.g. join, lexicographic product)

Recap Relational structures Example interpretations Everything?

Satisfaction sets

Quantifier-free formula ϕ with *n* free variables ($\phi \in QF_n$) with symbols from relational structure **H** with domain $V(\mathbf{H})$.

Satisfaction set
$$\phi(\mathbf{H}) = \{(v_1, \dots, v_n) \in V(\mathbf{H})^n : \mathbf{H} \models \phi\}.$$

e.g. for graph structure H (symmetric binary relation $x \sim y$ interpreted as x adjacent to y), and given graph G on n vertices,

$$\phi = \phi_G = \bigwedge_{ij \in E(G)} (v_i \sim v_j)$$

 $\phi_G(H) = \{ (v_1, \dots, v_n) : i \mapsto v_i \text{ is a homomorphism } G \to H \}$

 $|\phi_{G}(H)| = \hom(G, H).$

Recap Relational structures Example interpretations Everything?

Strongly polynomial sequences of structures

Definition

Sequence (\mathbf{H}_k) of relational structures strongly polynomial iff $\forall \phi \in QF \exists$ polynomial $r(\phi) \forall k \in \mathbb{N} |\phi(\mathbf{H}_k)| = r(\phi; k)$

Lemma

Equivalently,

- $\forall \mathbf{G} \exists \text{ polynomial } p(\mathbf{G}) \forall k \in \mathbb{N} \quad \hom(\mathbf{G}, \mathbf{H}_k) = p(\mathbf{G}; k), \text{ or }$
- $\forall \mathbf{F} \exists \text{ polynomial } q(\mathbf{F}) \forall k \in \mathbb{N} \quad ind(\mathbf{F}, \mathbf{H}_k) = q(\mathbf{F}; k).$

Transitive tournaments (\vec{T}_k) strongly polynomial sequence of digraphs (e.g. count induced substructures).

Recap Relational structures Example interpretations Everything?

Graphical QF interpretation schemes

I: Relational σ -structures **A** \longrightarrow Graphs H

Lemma

There is

$$\widetilde{\mathit{I}}: \phi \in \mathrm{QF}(\mathrm{Graphs}) \quad \longmapsto \quad \widetilde{\mathit{I}}(\phi) \in \mathrm{QF}(\sigma extsf{-structures})$$

such that

$$\phi(I(\mathbf{A})) = \widetilde{I}(\phi)(\mathbf{A})$$

In particular, (\mathbf{A}_k) strongly polynomial \Rightarrow $(H_k) = (I(\mathbf{A}_k))$ strongly polynomial.

Recap Relational structures Example interpretations Everything?

From graphs to graphs

- All previous constructions (complementation, line graph, disjoint union, join, direct product,...) special cases of interpretation schemes *I* from Marked Graphs (added unary relations) to Graphs.
- Cartesian product and other more complicated graph products are special kinds of such interpretation schemes too.

Recap Relational structures Example interpretations Everything?

- Generalized Johnson graphs (J_{k,ℓ,D}) arise as QF interpretations of transitive tournaments T
 [¯]_k
- Half-graphs are QF interpretations of a transitive tournament together with "marks" (unary relations used to specfiy "upper" + "lower" vertices) and so form a strongly polynomial sequence.

Recap Relational structures Example interpretations Everything?

• Intersection graphs of chords of a *k*-gon form a strongly polynomial sequence

(a) Square

(b) Pentagon

Recap Relational structures Example interpretations Everything?

Conjecture

All strongly polynomial sequences of graphs (H_k) can be obtained by QF interpretation of a "basic sequence" (disjoint union of marked transitive tournaments of size polynomial in k).

Recap Relational structures Example interpretations Everything?

Paley graphs Further problems

Prime power $q = p^d \equiv 1 \pmod{4}$ Paley graph $P_q = \text{Cayley}(\mathbb{F}_q, \text{non-zero squares})$, Quasi-random graphs: $\hom(G, P_q) / \hom(G, G_{q, \frac{1}{2}}) \to 1 \text{ as } q \to \infty$.

Proposition (Corollary to result of de la Harpe & Jaeger, 1995)

hom (G, P_q) is polynomial in q for series-parallel G. e.g. hom $(K_3, P_q) = \frac{q(q-1)(q-5)}{8}$

Prime $q \equiv 1 \pmod{4}$, $q = 4x^2 + y^2$, [Evans, Pulham, Sheehan, 1981]: $\hom(\mathcal{K}_4, P_q) = \frac{q(q-1)}{1536} \left((q-9)^2 - 4x^2 \right)$

Is $hom(G, P_q)$ polynomial in q and x for all graphs G?

Theorem (G., Nešetřil, Ossona de Mendez , 2014+)

If (H_k) is strongly polynomial then there are only finitely many terms belonging to a quasi-random sequence of graphs.

Paley graphs Further problems

- When is (Cayley(A_k, B_k)) polynomial in |A_k|, |B_k|, where B_k = -B_k ⊆ A_k?
 e.g. For D ⊂ N, sequence (Cayley(Z_k, ±D)) is polynomial iff D is finite or cofinite. (de la Harpe & Jaeger, 1995)
- ► Can (*H_k*) be verified to be strongly polynomial by testing hom(*G*, *H_k*) for *G* only in a restricted class of graphs? (yes, for connected graphs – but for a smaller class?)
- Which graph polynomials defined by strongly polynomial sequences of graphs satisfy a reduction formula (size-decreasing recurrence) like the chromatic polynomial and independence polynomial?
- Develop similar theory for hom(H_k, G) (e.g. hom(C_k, G) = ∑ λ^k, λ eigenvalues of G, determines characteristic polynomial of G by its roots).

Paley graphs Further problems

감사합니다

VVV

Paley graphs Further problems

Three papers

 P. de la Harpe and F. Jaeger, Chromatic invariants for finite graphs: theme and polynomial variations, *Lin. Algebra Appl.* 226–228 (1995), 687–722

Defining graphs invariants from counting graph homomorphisms. Examples. Basic constructions.

- D. Garijo, A. Goodall, J. Nešetřil, Polynomial graph invariants from homomorphism numbers. 40pp. arXiv: 1308.3999 [math.CO]
 Further examples. New construction using tree representations of graphs.
- A. Goodall, J. Nešetřil, P. Ossona de Mendez, Strongly polynomial sequences as interpretation of trivial structures. 17pp. Preprint. General relational structures: counting satisfying assignments for quantifier-free formulas. Building new polynomial invariants by interpretation of "trivial" sequences of marked tournaments.