Combinatorics and Graph Theory I

Exercise sheet 7: Spanning trees and double counting

19 April 2017

1. Let $\tau(G)$ denote the number of spanning trees of a connected graph G. Cayley's formula states that $\tau\left(K_{n}\right)=n^{n-2}$ for $n \geq 2$. Let K_{n}^{-}denote a graph isomorphic to K_{n} with one edge removed.

Find a formula for $\tau\left(K_{n}^{-}\right)$.
[Hint: the number of spanning trees containing a given edge of K_{n} is by symmetry the same for all edges.]
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, 2nd ed., 8.1, exercise 2]
2.
(i) Determine natural numbers a and b with $a+b=n$ for which the product $a b$ is maximized.
(ii) For natural numbers k and n, determine all values of natural numbers a_{1}, \ldots, a_{k} satisfying $\sum_{i=1}^{k} a_{i}=n$ such that the product $a_{1} a_{2} \cdots a_{k}$ is maximized.
(iii) A complete k-partite graph $K\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ on a vertex set V is determined by a partition V_{1}, \ldots, V_{k} of the set V, in which edges are pairs $\{x, y\}$ of vertices such that x and y lie in different classes of the partition. Formally, $K\left(V_{1}, \ldots, V_{k}\right)=(V, E)$, where $\{x, y\} \in E$ exactly if $x \neq y$ and $\left|\{x, y\} \cap V_{i}\right| \leq 1$ for all $i=1, \ldots, k$. Using part (ii), prove that the maximum number of edges of a complete k-partite graph on a given vertex set corresponds to a partition with almost equal parts, i.e. one with $\| V_{i}\left|-\left|V_{j}\right|\right| \leq 1$ for all i, j. How many edges are there in such a graph $K\left(V_{1}, \ldots, V_{k}\right)$?
[Matoušek \& Nešetriil, Invitation to Discrete Mathematics, 2nd ed., 4.7, exercises 1,2 and 3]
3. Prove that for any $t \geq 2$, the maximum number of edges of a graph on n vertices containing no $K_{2, t}$ as a subgraph is at most

$$
\frac{1}{2}\left(\sqrt{t-1} n^{3 / 2}+n\right)
$$

[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, 2nd ed. 7.3, exercise 1]
4. For real numbers x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} the Cauchy-Schwarz inequality states that

$$
\sum_{i=1}^{n} x_{i} y_{i} \leq \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \sqrt{\sum_{i=1}^{n} y_{i}^{2}} .
$$

(i) Prove the Cauchy-Schwarz inequality by induction on n (square both sides first).
(ii) Prove the Cauchy-Schwarz inequality directly, starting from the inequality

$$
\sum_{i, j=1}^{n}\left(x_{i} y_{j}-x_{j} y_{i}\right)^{2} \geq 0 .
$$

(iii)
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, 2nd ed., 7.3 exercise 4]

