Combinatorics and Graph Theory I Exercise sheet 6: Graph connectivity

12 April 2017

- 1. Let $\delta(G)$ denote the minimum degree of graph G.
 - (i) Define the parameters $\kappa(G)$ and $\lambda(G)$.

A graph G is 1-connected if it is connected.

For $k \ge 2$, a graph G = (V, E) is k-connected if |V| > k and there is no $U \subset V$ of size |U| < k such that G - U is disconnected.

The *connectivity* of G is defined as

$$\kappa(G) = \max\{k : G \text{ is } k \text{-connected}\}.$$

It is also equal to the minimum k such that there is $U \subset V$ of size |U| = k such that G - U is disconnected, with the exception of G on k vertices, $G \cong K_{k+1}$, $\kappa(K_{k+1}) = k$, for which removing k vertices leaves a single vertex, which is trivially connected.

A graph G is 1-edge-connected if it is connected. For $k \ge 2$, a graph G = (V, E) is k-edge-connected if |V| > 1, and there is no $F \subset E$ of size |F| < k such that G - F is disconnected. The *edge-connectivity* of G is defined as

$$\lambda(G) = \max\{k : G \text{ is } k \text{-edge-connected}\}.$$

It is also equal to the minimum k such that there is $F \subset E$ of size |F| = k such that G - F is disconnected.

(ii) Prove that

$$\kappa(G) \le \lambda(G) \le \delta(G)$$

for a graph G on more than one vertex.

[Bollobás, Modern Graph Theory, III.2.]

First we prove that $\lambda(G) \leq \delta(G)$. Take a vertex v of minimum degree $\delta(G)$ and set F to be the set of edges incident with v. Then G - F is disconnected (since v is isolated) and $|F| = \delta(G)$. This implies G is at most $\delta(G)$ -edge-connected. Hence $\lambda(G) \leq \delta(G)$.

Second we prove that $\kappa(G) \leq \lambda(G)$. If $\lambda(G) = 1$ then G is connected and $\kappa(G) = 1 = \lambda(G)$. Suppose then $\lambda(G) = k \geq 2$. For G the complete graph on k + 1 vertices we have $\kappa(G) = k = \lambda(G)$. So we may assume G has at least k + 2 vertices. Since $\lambda(G) = k$, there is a set of edges $F = \{u_1v_1, \ldots, u_kv_k\}$ disconnecting G, in which we may assume notation has been chosen so that u_1, \ldots, u_k belong to the same component C of G - F (minimality of k for edge-cut size means that G - F has two components only: one containing the u_i , the other the v_i). If $G - \{u_1, \ldots, u_k\}$ is disconnected then $\kappa(G) \leq k$. Suppose then that $G - \{u_1, \ldots, u_k\}$ is connected. Then u_1, \ldots, u_k form the whole vertex set of C. It follows that each vertex u_i has at most k neighbours, namely some of the other vertices

 $u_1, \ldots, u_{i-1}, u_{i+1}, \ldots, u_k$, and the vertex v_i . The degree of u_i must in fact equal k since $\delta(G) \geq \lambda(G) = k$. Deleting the neighbours of u_i disconnects the graph (here we use that there are at least k + 2 vertices so that the graph is indeed disconnected by isolating the vertex u_i). Hence $\kappa(G) \leq k = \lambda(G)$ here too.

- (iii) Let k and ℓ be integers with $1 \le k \le \ell$.
 - (a) Construct a graph G with $\kappa(G) = k$ and $\lambda(G) = \ell$. In fact we construct a graph with $\delta(G) = d \ge \ell$ and |V(G)| = n > 2d. Let $U = \{u_1, \ldots, u_{d+1}\}$ and $V = \{v_1, \ldots, v_{n-d-1}\}$ be disjoint sets of vertices. Let G be the graph on vertex set $U \cup V$ such that $G[U] \cong K_{d+1}$ and $G[V] \cong K_{n-d-1}$, and with further edges u_1v_1, \ldots, u_kv_k plus $\ell - k$ further edges u_iv for $v \in V$. Then G has n vertices, minimum degree d, connectivity k (remove $\{u_1, \ldots, u_k\}$) and edge-connectivity ℓ (remove the edges between U and V).
 - (b) Construct a graph G with κ(G) = k and κ(G v) = l for some vertex v. Let U = {u₁,..., u_{l+1}} and v ∉ U.
 Let G be the graph on vertex set U∪{v} such that G[U] ≅ K_{l+1} and u₁v, u₂v,..., u_kv are the only other edges. Then the vertex cut {u₁, u₂,...u_k}, producing an isolated vertex v, shows that κ(G) = k (as there are no smaller vertex cuts) while G-v ≅ K_{l+1} has connectivity l.
 - (a) Construct a graph G with $\lambda(G-u) = k$ and $\lambda(G-uv) = \ell$ for some edge uv. Let $U = \{u_1, \ldots, u_\ell\} \cup \{u\}$ and $V = \{v_1, \ldots, v_\ell\} \cup \{v\}$ be disjoint sets of vertices. Let G be the graph on vertex set $U \cup V$ such that $G[U] \cong K_{\ell+1} \cong G[V]$, uv is an edge, and u_1v, u_2v, \ldots, u_kv and $uv_1, \ldots, uv_{\ell-k}$ are the remaining edges. Then G - uv has edge cut $\{u_1v, u_2v, \ldots, u_kv\} \cup \{uv_1, \ldots, uv_{\ell-k}\}$ of size ℓ and no smaller edge cuts, so $\lambda(G-uv) = \ell$. The graph G-u has edge cut $\{u_1v, u_2v, \ldots, u_kv\}$ of size k and no smaller ones, so $\lambda(G-u) = k$.

[Bollobás, Modern Graph Theory, III.6, exercise 11]

2. Given $U \subset V(G)$ and a vertex $x \in V(G) - U$, an x - U fan is a set of |U| paths from x to U any two of which have exactly the vertex x in common. Prove that a graph G is k-connected iff $|G| \ge k + 1$ and for any $U \subset V(G)$ of size |U| = k and vertex x not in U there is an x - U fan in G.

[Given a pair (x, U), add a vertex u to G and join it to each vertex in U. Check that the new graph is k-connected if G is. Apply Menger's theorem for x and u.]

[Bollobás, Modern Graph Theory, III.6 exercise 13]