Combinatorics and Graph Theory I

Exercise sheet 6: Graph connectivity

12 April 2017

1. Let $\delta(G)$ denote the minimum degree of graph G.
(i) Define the parameters $\kappa(G)$ and $\lambda(G)$.

A graph G is 1-connected if it is connected.
For $k \geq 2$, a graph $G=(V, E)$ is k-connected if $|V|>k$ and there is no $U \subset V$ of size $|U|<k$ such that $G-U$ is disconnected.

The connectivity of G is defined as

$$
\kappa(G)=\max \{k: G \text { is } k \text {-connected }\} .
$$

It is also equal to the minimum k such that there is $U \subset V$ of size $|U|=k$ such that $G-U$ is disconnected, with the exception of G on k vertices, $G \cong K_{k+1}, \kappa\left(K_{k+1}\right)=k$, for which removing k vertices leaves a single vertex, which is trivially connected.

A graph G is 1-edge-connected if it is connected. For $k \geq 2$, a graph $G=(V, E)$ is k-edge-connected if $|V|>1$, and there is no $F \subset E$ of size $|F|<k$ such that $G-F$ is disconnected. The edge-connectivity of G is defined as

$$
\lambda(G)=\max \{k: G \text { is } k \text {-edge-connected }\} .
$$

It is also equal to the minimum k such that there is $F \subset E$ of size $|F|=k$ such that $G-F$ is disconnected.
(ii) Prove that

$$
\kappa(G) \leq \lambda(G) \leq \delta(G)
$$

for a graph G on more than one vertex.
[Bollobás, Modern Graph Theory, III.2.]
First we prove that $\lambda(G) \leq \delta(G)$. Take a vertex v of minimum degree $\delta(G)$ and set F to be the set of edges incident with v. Then $G-F$ is disconnected (since v is isolated) and $|F|=\delta(G)$. This implies G is at most $\delta(G)$-edge-connected. Hence $\lambda(G) \leq \delta(G)$.
Second we prove that $\kappa(G) \leq \lambda(G)$. If $\lambda(G)=1$ then G is connected and $\kappa(G)=1=$ $\lambda(G)$. Suppose then $\lambda(G)=k \geq 2$. For G the complete graph on $k+1$ vertices we have $\kappa(G)=k=\lambda(G)$. So we may assume G has at least $k+2$ vertices. Since $\lambda(G)=k$, there is a set of edges $F=\left\{u_{1} v_{1}, \ldots, u_{k} v_{k}\right\}$ disconnecting G, in which we may assume notation has been chosen so that u_{1}, \ldots, u_{k} belong to the same component C of $G-F$ (minimality of k for edge-cut size means that $G-F$ has two components only: one containing the u_{i}, the other the v_{i}). If $G-\left\{u_{1}, \ldots, u_{k}\right\}$ is disconnected then $\kappa(G) \leq k$. Suppose then that $G-\left\{u_{1}, \ldots, u_{k}\right\}$ is connected. Then u_{1}, \ldots, u_{k} form the whole vertex set of C. It follows that each vertex u_{i} has at most k neighbours, namely some of the other vertices
$u_{1}, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{k}$, and the vertex v_{i}. The degree of u_{i} must in fact equal k since $\delta(G) \geq \lambda(G)=k$. Deleting the neighbours of u_{i} disconnects the graph (here we use that there are at least $k+2$ vertices so that the graph is indeed disconnected by isolating the vertex $\left.u_{i}\right)$. Hence $\kappa(G) \leq k=\lambda(G)$ here too.
(iii) Let k and ℓ be integers with $1 \leq k \leq \ell$.
(a) Construct a graph G with $\kappa(G)=k$ and $\lambda(G)=\ell$.

In fact we construct a graph with $\delta(G)=d \geq \ell$ and $|V(G)|=n>2 d$.
Let $U=\left\{u_{1}, \ldots, u_{d+1}\right\}$ and $V=\left\{v_{1}, \ldots, v_{n-d-1}\right\}$ be disjoint sets of vertices. Let G be the graph on vertex set $U \cup V$ such that $G[U] \cong K_{d+1}$ and $G[V] \cong K_{n-d-1}$, and with further edges $u_{1} v_{1}, \ldots, u_{k} v_{k}$ plus $\ell-k$ further edges $u_{i} v$ for $v \in V$. Then G has n vertices, minimum degree d, connectivity k (remove $\left\{u_{1}, \ldots u_{k}\right\}$) and edgeconnectivity ℓ (remove the edges between U and V).
(b) Construct a graph G with $\kappa(G)=k$ and $\kappa(G-v)=\ell$ for some vertex v.

Let $U=\left\{u_{1}, \ldots, u_{\ell+1}\right\}$ and $v \notin U$.
Let G be the graph on vertex set $U \cup\{v\}$ such that $G[U] \cong K_{\ell+1}$ and $u_{1} v, u_{2} v, \ldots, u_{k} v$ are the only other edges. Then the vertex cut $\left\{u_{1}, u_{2}, \ldots u_{k}\right\}$, producing an isolated vertex v, shows that $\kappa(G)=k$ (as there are no smaller vertex cuts) while $G-v \cong K_{\ell+1}$ has connectivity ℓ.
(a) Construct a graph G with $\lambda(G-u)=k$ and $\lambda(G-u v)=\ell$ for some edge $u v$.

Let $U=\left\{u_{1}, \ldots, u_{\ell}\right\} \cup\{u\}$ and $V=\left\{v_{1}, \ldots, v_{\ell}\right\} \cup\{v\}$ be disjoint sets of vertices.
Let G be the graph on vertex set $U \cup V$ such that $G[U] \cong K_{\ell+1} \cong G[V]$, $u v$ is an edge, and $u_{1} v, u_{2} v, \ldots, u_{k} v$ and $u v_{1}, \ldots, u v_{\ell-k}$ are the remaining edges.
Then $G-u v$ has edge cut $\left\{u_{1} v, u_{2} v, \ldots, u_{k} v\right\} \cup\left\{u v_{1}, \ldots, u v_{\ell-k}\right\}$ of size ℓ and no smaller edge cuts, so $\lambda(G-u v)=\ell$. The graph $G-u$ has edge cut $\left\{u_{1} v, u_{2} v, \ldots, u_{k} v\right\}$ of size k and no smaller ones, so $\lambda(G-u)=k$.
[Bollobás, Modern Graph Theory, III.6, exercise 11]
2. Given $U \subset V(G)$ and a vertex $x \in V(G)-U$, an $x-U$ fan is a set of $|U|$ paths from x to U any two of which have exactly the vertex x in common. Prove that a graph G is k-connected iff $|G| \geq k+1$ and for any $U \subset V(G)$ of size $|U|=k$ and vertex x not in U there is an $x-U$ fan in G.
[Given a pair (x, U), add a vertex u to G and join it to each vertex in U. Check that the new graph is k-connected if G is. Apply Menger's theorem for x and u.]
[Bollobás, Modern Graph Theory, III. 6 exercise 13]

