Combinatorics and Graph Theory I

Exercise sheet 6: Graph connectivity

12 April 2017

1. Let $\delta(G)$ denote the minimum degree of graph G.
(i) Define the parameters $\kappa(G)$ and $\lambda(G)$.
(ii) Prove that

$$
\kappa(G) \leq \lambda(G) \leq \delta(G)
$$

for a graph G on more than one vertex.
[Bollobás, Modern Graph Theory, III.2.]
(iii) Let k and ℓ be integers with $1 \leq k \leq \ell$.
(a) Construct a graph G with $\kappa(G)=k$ and $\lambda(G)=\ell$.
(b) Construct a graph G with $\kappa(G)=k$ and $\kappa(G-v)=\ell$ for some vertex v.
(a) Construct a graph G with $\lambda(G-u)=k$ and $\lambda(G-u v)=\ell$ for some edge $u v$.
[Bollobás, Modern Graph Theory, III.6, exercise 11]
2. Given $U \subset V(G)$ and a vertex $x \in V(G)-U$, an $x-U$ fan is a set of $|U|$ paths from x to U any two of which have exactly the vertex x in common. Prove that a graph G is k-connected iff $|G| \geq k+1$ and for any $U \subset V(G)$ of size $|U|=k$ and vertex x not in U there is an $x-U$ fan in G.
[Given a pair (x, U), add a vertex u to G and join it to each vertex in U. Check that the new graph is k-connected if G is. Apply Menger's theorem for x and u.]
[Bollobás, Modern Graph Theory, III. 6 exercise 13]
3. Prove that if G is k-connected $(k \geq 2)$, then every set of k vertices is contained in a cycle. Is the converse true?
[Bollobás, Modern Graph Theory, III. 6 exercise 14. Cf. for $k=2$, Matoušek \& Nešetřil, Invitation to Discrete Mathematics, 2nd, ed. Theorem 4.6.3]
4. The line graph $L(G)$ of a graph $G=(V, E)$ has vertex set E and two vertices $e, f \in E$ are adjacent iff they have exactly one vertex of G in common. By applying the vertex form of Menger's theorem to the line graph $L(G)$, prove that the vertex form of Menger's theorem implies the edge form.
[Bollobás, Modern Graph Theory, III. 6 exercise 15.]

