Combinatorics and Graph Theory I

Exercise sheet 4: Flows in directed graphs

15 March 2017

1. Sketch the network whose vertices are s, a, b, c, d, t and whose arcs and capacities are

$$
\begin{array}{c|cccccccc}
(x, y): & (s, a) & (s, b) & (a, b) & (a . c) & (b, d) & (d, c) & (c, t) & (d, t) \\
c(x, y): & 5 & 3 & 3 & 3 & 5 & 2 & 6 & 2
\end{array}
$$

Find a flow with value 7 and a cut with capacity 7 . What is the value of the maximum flow, and why?
2. Let $\vec{G}=(V, \vec{E})$ be a digraph with source s and $\operatorname{sink} t$ and suppose $\phi: \vec{E} \rightarrow \mathbb{R}$ is a function, not necessarily a flow.
(a) Show that

$$
\sum_{x \in V} \phi(x, V \backslash x)=\sum_{x \in V} \phi(V \backslash x, x)
$$

(b) Deduce from (a) that if ϕ is a flow then the net flow out of s is equal to the net flow into t :

$$
\phi(s, V \backslash s)-\phi(V \backslash s, s)=\phi(V \backslash t, t)-\phi(t, V \backslash t)
$$

3. Suppose $S \subseteq \vec{E}$ is a set of edges after whose deletion there is no flow from s to t with strictly positive value. Prove that S contains a cut separating s from t, i.e., there is $X \subset V$ with $s \in X$ and $t \notin X$ such that $\vec{E}(X, V \backslash X) \subseteq S$.
[Bollobás, Modern Graph Theory, III. 6 exercise 1]
4. Let $f: \vec{E} \rightarrow \mathbb{R}^{+}$be a flow on a digraph $\vec{G}=(V, \vec{E})$ with source s, sink t and capacity function $c: \vec{E} \rightarrow \mathbb{R}^{+}$.
(a) Define the value of the flow f.
(b) Suppose that $X \subseteq V$ contains s but not t. Show that the value of f is also equal to

$$
f(X, V \backslash X)-f(V \backslash X, X)
$$

(c) Using (b) and the fact that $0 \leq f(x, y) \leq c(x, y)$ for each $(x, y) \in \vec{E}$ prove that the value of f is at most equal to the capacity of a cut $\vec{E}(X, V \backslash X)$ separating s from t.
[Bollobás, Modern Graph Theory, III. 6 exercise 2]
5. Let f be a flow on a network comprising digraph \vec{G}, source s, $\operatorname{sink} t$, and capacity function $c: \vec{E} \rightarrow \mathbb{R}^{+}$.

A positive cycle in f is a directed cycle in \vec{G} such that $f(x, y)>0$ for each arc (x, y) in the directed cycle.

By successively reducing the number of positive cycles in a given flow f of maximum value prove that there is a maximal flow f^{*} without positive cycles in which $f^{*}(V \backslash s, s)=0$ and $f^{*}(t, V \backslash t)=0$.
[Bollobás, Modern Graph Theory, III. 6 exercise 4]

Supplementary notes Let $\vec{G}=(V, \vec{E})$ be a digraph and \vec{G} a capacity function $c: \vec{E} \rightarrow \mathbb{R}^{+}$. The out-neighbourhood of $x \in V$ is

$$
\Gamma^{+}(x)=\{y \in V:(x, y) \in \vec{E}\}
$$

and the in-neighbourhood of x is

$$
\Gamma^{-}(x)=\{z \in V:(z, x) \in \vec{E}\}
$$

For $X, Y \subseteq V$,

$$
\vec{E}(X, Y)=\{(x, y) \in \vec{E}: x \in X, y \in Y\}
$$

For a function $\phi: \vec{E} \rightarrow \mathbb{R}^{+}$we set

$$
\phi(X, Y)=\sum_{\substack{x \in X, y \in Y \\(x, y) \in \vec{E}}} \phi(x, y)
$$

In particular,

$$
\phi(x, V \backslash x)=\sum_{y \in \Gamma^{+}(x)} \phi(x, y), \quad \text { and } \quad \phi(V \backslash x, x)=\sum_{z \in \Gamma^{-}(x)} \phi(z, x) .
$$

The capacity of the cut $\vec{E}(X, V \backslash X)$ is $c(X, V \backslash X)$.
In this notation, a feasible flow is a function $f: \vec{E} \rightarrow \mathbb{R}^{+}$such that

$$
\begin{gathered}
f(x, y) \leq c(x, y) \quad \text { for each } \quad(x, y) \in \vec{E}, \quad \text { and } \\
f(x, V \backslash x)=f(V \backslash x, x) \quad \text { for each } \quad x \in V \backslash\{s, t\} .
\end{gathered}
$$

