Combinatorics and Graph Theory I

Exercise sheet 3: Generating functions ctd.

8 March 2017

1. Express the nth term of the sequences given by the following recurrence relations (generalize the method used for the Fibonacci numbers in Section 12.3):
(a) $a_{0}=2, a_{1}=3, a_{n+2}=3 a_{n}-2 a_{n+1}(n=0,1,2, \ldots)$
(b) $a_{0}=0, a_{1}=1, a_{n+2}=4 a_{n+1}-4 a_{n}(n=0,1,2, \ldots)$
(c) $a_{0}=1, a_{n+1}=2 a_{n}+3(n=0,1,2, \ldots)$
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.3, exercise 12.3.3.]
2. Solve the recurrence $a_{n+2}=\sqrt{a_{n+1} a_{n}}$ with initial conditions $a_{0}=2, a_{1}=8$. Find $\lim _{n \rightarrow \infty} a_{n}$.
[Take base 2 logarithms of the given recurrence.]
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.3, exercise 12.3.5.]
3.

(a) Solve the recurrence $a_{n}=a_{n-1}+a_{n-2}+\cdots+a_{1}+a_{0}$ with the initial condition $a_{0}=1$.
*(b) Solve the recurrence $a_{n}=a_{n-1}+a_{n-3}+\cdots+a_{1}+a_{0}(n \geq 3)$ with the initial condition $a_{0}=a_{1}=a_{2}=1$.
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.3, exercise 12.3.6.]
4. Express the sum

$$
S_{n}=\binom{2 n}{0}+2\binom{2 n-1}{1}+2^{2}\binom{2 n-2}{2}+\cdots+2^{n}\binom{n}{n}
$$

as the coefficient of $x^{2 n}$ in a suitable power series. Find a simple formula for S_{n}.
$\left[\right.$ Use $x^{k}(1+2 x)^{k}=\sum_{i=0}^{k} 2^{i}\binom{k}{i} x^{k+i}$, sum over integers k, and set $k+i=2 n$ to pick out the requisite coefficient.]
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.3, exercise 12.3.7]
5.
(a) Show that the number $\frac{1}{2}(1+\sqrt{2})^{n}+\frac{1}{2}(1-\sqrt{2})^{n}$ is an integer for all $n \geq 1$. [Find the generating function for the sequence; equivalently, the recurrence it satisfies.]
(b) Show that the decimal expansion of $(6+\sqrt{37})^{999}$ has at least 999 zeros following the decimal point.
[Show that $a_{n}=(6+\sqrt{37})^{n}+(6-\sqrt{37})^{n}$ satisfies $a_{n+2}=12 a_{n+1}+a_{n}$ with initial conditions $a_{0}=2$, $a_{1}=12$, and hence is an integer for all $n \geq 1$. Use the fact that $\sqrt{37}-6<0 \cdot 1$.]
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.3, exercises 12.3.9 and 12.3.10.]

