Combinatorics and Graph Theory I

Exercise sheet 2: Generating functions

1 March 2017
1.
(a) Prove the multinomial theorem, for $n \in \mathbb{N}=\{0,1,2, \ldots\}$,

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}=\sum_{\substack{k_{1}+k_{2}+\ldots+k_{m}=n \\ k_{1}, k_{2}, \ldots, k_{m} \in \mathbb{N}}}\binom{n}{k_{1}, k_{2}, \ldots, k_{m}} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{m}^{k_{m}},
$$

by a combinatorial argument similar to the proof of the binomial expansion given in Section 12.1. Here

$$
\binom{n}{k_{1}, k_{2}, \ldots, k_{m}}=\frac{n!}{k_{1}!k_{2}!\cdots k_{m}!}
$$

is the multinomial coefficient.
[Compare Theorem 3.3.5 and its proof by induction in Exercise 3.3.26.]
(b) Let a_{n} be the number of ordered m-tuples ($k_{1}, k_{2}, \ldots, k_{m}$) of nonnegative integers with $k_{1}+$ $k_{2}+\cdots+k_{m}=n$. [Thus a_{n} is the number of terms on the right-hand side of the multinomial expansion in (a).] Find the generating function of the sequence ($a_{0}, a_{1}, a_{2}, \ldots$).
(c) Use (b) and the generalized binomial theorem to derive a formula for a_{n}. [Compare also the combinatorial proof of (c) given in Section 3.3.]
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.1, exercise 12.1.3 and section 12.2, exercise 12.2.6]
2.
(a) Explain why $\binom{n}{i}^{2}=\binom{n}{i}\binom{n}{n-i}$. Find a closed formula (i.e., not involving summation) for

$$
\sum_{i=0}^{n}\binom{n}{i}^{2}
$$

(b) Find a closed formula for

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}^{2} .
$$

[The answer depends on the parity of n.]
(c) By determining the coefficient of x^{k} in the expansion of $(1+x)^{m}(1+x)^{n-m}=(1+x)^{n}$ show that

$$
\sum_{i=0}^{k}\binom{m}{i}\binom{n-m}{k-i}=\binom{n}{k} .
$$

(d) What identity results upon setting $m=1$ in the identity of part (c)?
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.1, another proof of Prop. 3.3.4, and exercise 12.1.6 extended.]
3. For a polynomial or power series $a(x)$ we let $\left[x^{k}\right] a(x)$ denote the ceofficient of x^{k} in $a(x)$. Determine the following coefficients:
(a) $\left[x^{50}\right]\left(x^{7}+x^{8}+x^{9}+x^{10}+\cdots\right)^{6}$
(b) $\left[x^{5}\right](1-2 x)^{-2}$
(c) $\left[x^{4}\right] \sqrt[3]{(1+x)}$
d) $\left[x^{3}\right](2+x)^{3 / 2} /(1-x)$
(e) $\left[x^{3}\right]\left(1-x+2 x^{2}\right)^{9}$
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.2, exercise 12.2.2]
4. Find generating functions for the following sequences (express them in closed form, without infinite series!):
(a) $0,0,0,0,-6,6,-6,6,-6, \ldots$
(b) $1,0,1,0,1,0, \ldots$
(c) $1,2,1,4,1,8, \ldots$
(d) $1,1,0,1,1,0,1,1,0, \ldots$
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.2, exercise 12.2.3]
5.
(a) Let $A, B, C \subset \mathbb{N}$ and let $a(x)=\sum_{i \in A} x^{i}, b(x)=\sum_{j \in B} x^{j}$ and $c(x)=\sum_{k \in C} x^{k}$ be power series. Explain why the number of solutions to the equation $i+j+k=n$ with $i \in A$, $j \in B$ and $k \in C$ is equal to the coefficient of x^{n} in the power series $a(x) b(x) c(x)$.
(b) Let a_{n} be the number of solutions to the equation

$$
i+3 j+3 k=n, \quad i \geq 0, j \geq 1, k \geq 1 .
$$

Find the generating function of the sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ and derive a formula for a_{n}.
[Matoušek \& Nešetrill, Invitation to Discrete Mathematics, section 12.2, exercise 12.2.5]
6.
(a) Find the generating function for the sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ with $a_{n}=(n+1)^{2}$.
(b) Check that if $a(x)$ is the generating function of a sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ then $\frac{1}{1-x} a(x)$ is the generating function of the sequence of partial sums $\left(a_{0}, a_{0}+a_{1}, a_{0}+a_{1}+a_{2}, \ldots\right)$.
(c) Using (a) and (b) calculate the sum $\sum_{k=1}^{n} k^{2}$.
(d) By a similar method, calculate the sum $\sum_{k=1}^{n} k^{3}$.
(e) For natural numbers n and m, find a closed formula for the sum $\sum_{k=0}^{m}(-1)^{k}\binom{n}{k}$.
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.2, Problem 2.2.4, exercise 12.2.9.]

