Combinatorics and Graph Theory I

Exercise sheet 9: coding theory

10 May 2017

1. Let C be a binary linear code. Show that the subset of C containing those codewords which have even weight is also a linear code. Deduce that either all codewords in C have even weight, or exactly half of them have even weight.
[N. Biggs, Discrete Mathematics, rev. ed., 1989, 17.2, exercise 4]
2. Let $\left(\left[n^{2}+n+1\right], \mathcal{L}\right)$ be a projective plane of order n, in which the set of points is identified with the set of integers $\left[n^{2}+n+1\right]:=\left\{1,2, \ldots, n^{2}+n+1\right\}$.

Define the $\left(n^{2}+n+1, \log _{2}\left(n^{2}+n+1\right), d\right)_{2}$ binary code C as the set of vectors $\left\{\mathbf{x}^{(L)}=\right.$ $\left.\left(x_{1}^{(L)}, \ldots, x_{n^{2}+n+1}^{(L)}\right): L \in \mathcal{L}\right\}$ in which

$$
x_{i}^{(L)}= \begin{cases}1 & i \in L \\ 0 & \text { otherwise }\end{cases}
$$

(The vector $\mathbf{x}^{(L)}$ is a row of the line-point incidence matrix of the projective plane.)
Show that the minimum distance of C is equal to $2 n$.
[N. Biggs, Discrete Mathematics, rev. ed., 1989, 17.7, exercise 17]
3. Let

$$
C=\left\{\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k} \\
x_{k+1}
\end{array}\right) \in \mathbb{F}_{q}^{k+1}:\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right) \in \mathbb{F}_{q}^{k}, \quad \sum_{i=1}^{k} x_{i}=x_{k+1}\right\},
$$

where the summation involves addition in \mathbb{F}_{q}.
(i) Show that for $q=2$ the code C has $k \times 1$ parity check matrix

$$
H=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)
$$

and $(k+1) \times k$ generator matrix

$$
G=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
& \ldots & \ldots & \\
0 & 0 & \ldots & 1 \\
1 & 1 & \cdots & 1
\end{array}\right)
$$

(ii) Write down a generator matrix for C for general prime power q.
(iii) Show that C achieves the Singleton bound given in question 4 (ii) below.
4.
(i) Suppose that C is a linear binary code of length n and dimension k. Show that if e is the maximum number of errors that C will correct by minimum distance decoding then

$$
2^{n-k} \geq 1+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{e} .
$$

(ii) Deduce from (ii) that no linear binary code of length 17 and dimension 10 can correct more than one error.
(iii) Suppose more generally that C is a linear code over \mathbb{F}_{q} of length n and dimension k. Show that if e is the maximum number of errors that C will correct by minimum distance decoding then

$$
q^{n-k} \geq \sum_{j=0}^{e}\binom{n}{k}(q-1)^{j} .
$$

[N. Biggs, Discrete Mathematics, rev. ed., 1989, 17.2, extended]
5.
(i) Show that if C is a q-ary block code of length n and minimum distance d then

$$
|C| \leq q^{n-d+1} .
$$

[By assumption any two codewords $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ differ in at least d places. Consider the map $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-d+1}\right)$ with domain C defined by deleting the last $d-1$ letters of each codeword.]
(ii) Deduce from (i) that if C is a linear code over \mathbb{F}_{q} with block length n, dimension k and minimum distance d then

$$
d \leq n-k+1 .
$$

(iii) Derive the result of (ii) in a different way by using the fact that the rank of the parity check matrix for C is equal to $n-k$.

