Combinatorics and Graph Theory I

Exercise sheet 1: Estimates

22 February 2017

1. Show that if $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$ then $f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$ and $f_1(n)f_2(n) = O(g_1(n)g_2(n))$.

Express in words the statements f(n) = O(1), $g(n) = \Omega(1)$ and $h(n) = n^{O(1)}$.

- (a) Prove that $n^{\alpha} = O(n^{\beta})$ for $\alpha \leq \beta$.
- (b) Prove that $n^{\gamma} = O(a^n)$ for any a > 1.
- (c) Deduce from (b) that $(\ln n)^{\gamma} = O(n^{\alpha})$ for any $\alpha > 0$.

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 3.4, Fact 3.4.3 and exercise 3.4.6.]

2. Prove using the Mean Value Theorem that $1 + x \le e^x$ for all $x \in \mathbb{R}$.

[Use the fact that the function $f(x) = e^x$ is its own derivative, $f'(x) = e^x$, and consider this function on the interval [0, x].]

- (a) Prove by induction Bernouilli's Inequality $(1+x)^n \ge 1 + nx$ for all $x \ge -1$,
- (b) $e\left(\frac{n}{e}\right)^n \le n!$ by induction on n,
- (c) $n! \le en\left(\frac{n}{e}\right)^n$ by induction on n,
- (d) $n! \leq e\left(\frac{n+1}{e}\right)^{n+1}$ by taking natural logarithms and comparing $\ln n!$ with the integral $\int_1^{n+1} \ln x \, dx$, and after this derive (b) from this inequality.

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 3.5, exercises 3.5.11 and 3.5.9, first and second proofs of Theorem 3.5.5]

3.

(a) Prove using integration that for $n \geq 1$,

$$\ln(n+1) < \sum_{k=1}^{n} \frac{1}{k} \le \ln n + 1.$$

[Use the fact that if $\int f(x) dx = F(x) + c$ for constant c then $\int_a^b f(x) dx = F(b) - F(a)$. Also that the area under the curve y = f(x) between the lines x = a and x = b equals the integral $\int_a^b f(x) dx$.]

(b) Derive a similar estimate as (a) for the series $\sum_{k=1}^{n} \frac{1}{k^{p}}$ for p > 1.

(c) By considering the series $\sum a_k$ with terms

$$a_k = \frac{1}{k} - \int_k^{k+1} \frac{\mathrm{d}x}{x}$$

show that

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + O(\frac{1}{n}),$$

where γ is the Euler-Mascheroni constant, $0 < \gamma < \sum_{k=1}^{\infty} \frac{1}{2k^2}$. [Use the Taylor expansion for $\ln(1+x)$ with $x = \frac{1}{k}$ to bound a_k , express $\sum \frac{1}{k}$ in terms of $\sum a_k$ and an integral.]

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 3.6, exercise 3.6.13(b) extended]

4.

(a) Prove the binomial expansion

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

(b) Use the binomial expansion to show that $\binom{n}{k} \leq \left(\frac{en}{k}\right)^k$.

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 3.6, Theorem 3.6.1]

5.

- (a) Prove the arithmetic-geometric mean inequality $\sqrt{ab} \leq \frac{1}{2}(a+b)$.
- (b) Prove by induction on n and using (a) that for $n \ge 1$ we have

$$2\sqrt{n+1} - 2 < \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \le 2\sqrt{n} - 1.$$

[This can alternatively be obtained by integration as in question 3(b).]

(c) Use the inequality $1+x \le e^x$ and induction to prove the inequality in 3(a)

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 3.5, exercises 3.5.12 and 3.5.13.]