Combinatorics and Graph Theory I

Exercise sheet 1: Estimates

22 February 2017

1. Show that if $f_{1}(n)=O\left(g_{1}(n)\right)$ and $f_{2}(n)=O\left(g_{2}(n)\right)$ then $f_{1}(n)+f_{2}(n)=O\left(g_{1}(n)+g_{2}(n)\right)$ and $f_{1}(n) f_{2}(n)=O\left(g_{1}(n) g_{2}(n)\right)$.

Express in words the statements $f(n)=O(1), g(n)=\Omega(1)$ and $h(n)=n^{O(1)}$.
(a) Prove that $n^{\alpha}=O\left(n^{\beta}\right)$ for $\alpha \leq \beta$.
(b) Prove that $n^{\gamma}=O\left(a^{n}\right)$ for any $a>1$.
(c) Deduce from (b) that $(\ln n)^{\gamma}=O\left(n^{\alpha}\right)$ for any $\alpha>0$.
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 3.4, Fact 3.4.3 and exercise 3.4.6.]
2. Prove using the Mean Value Theorem that $1+x \leq e^{x}$ for all $x \in \mathbb{R}$.
[Use the fact that the function $f(x)=e^{x}$ is its own derivative, $f^{\prime}(x)=e^{x}$, and consider this function on the interval $[0, x]$.
(a) Prove by induction Bernouilli's Inequality $(1+x)^{n} \geq 1+n x$ for all $x \geq-1$,
(b) $e\left(\frac{n}{e}\right)^{n} \leq n$! by induction on n,
(c) $n!\leq e n\left(\frac{n}{e}\right)^{n}$ by induction on n,
(d) n ! $\leq e\left(\frac{n+1}{e}\right)^{n+1}$ by taking natural logarithms and comparing $\ln n$! with the integral $\int_{1}^{n+1} \ln x \mathrm{~d} x$, and after this derive (b) from this inequality.
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 3.5, exercises 3.5.11 and 3.5.9, first and second proofs of Theorem 3.5.5]
3.
(a) Prove using integration that for $n \geq 1$,

$$
\ln (n+1)<\sum_{k=1}^{n} \frac{1}{k} \leq \ln n+1
$$

[Use the fact that if $\int f(x) \mathrm{d} x=F(x)+c$ for constant c then $\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a)$. Also that the area under the curve $y=f(x)$ between the lines $x=a$ and $x=b$ equals the integral $\int_{a}^{b} f(x) \mathrm{d} x$.]
(b) Derive a similar estimate as (a) for the series $\sum_{k=1}^{n} \frac{1}{k^{p}}$ for $p>1$.
(c) By considering the series $\sum a_{k}$ with terms

$$
a_{k}=\frac{1}{k}-\int_{k}^{k+1} \frac{\mathrm{~d} x}{x}
$$

show that

$$
\sum_{k=1}^{n} \frac{1}{k}=\ln n+\gamma+O\left(\frac{1}{n}\right),
$$

where γ is the Euler-Mascheroni constant, $0<\gamma<\sum_{k=1}^{\infty} \frac{1}{2 k^{2}}$. [Use the Taylor expansion for $\ln (1+x)$ with $x=\frac{1}{k}$ to bound a_{k}, express $\sum \frac{1}{k}$ in terms of $\sum a_{k}$ and an integral.]
[Matoušek \& Nešetrill, Invitation to Discrete Mathematics, section 3.6, exercise 3.6.13(b) extended]
4.
(a) Prove the binomial expansion

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} .
$$

(b) Use the binomial expansion to show that $\binom{n}{k} \leq\left(\frac{e n}{k}\right)^{k}$.
[Matoušek \& Nešetril, Invitation to Discrete Mathematics, section 3.6, Theorem 3.6.1]
5.
(a) Prove the arithmetic-geometric mean inequality $\sqrt{a b} \leq \frac{1}{2}(a+b)$.
(b) Prove by induction on n and using (a) that for $n \geq 1$ we have

$$
2 \sqrt{n+1}-2<\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq 2 \sqrt{n}-1 .
$$

[This can alternatively be obtained by integration as in question 3(b).]
(c) Use the inequality $1+x \leq e^{x}$ and induction to prove the inequality in 3(a)
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 3.5, exercises 3.5.12 and 3.5.13.]

